{"title":"Multi-Scale Frequency Enhancement Network for Blind Image Deblurring","authors":"YaWen Xiang, Heng Zhou, Xi Zhang, ChengYang Li, ZhongBo Li, YongQiang Xie","doi":"10.1049/ipr2.70036","DOIUrl":null,"url":null,"abstract":"<p>Image deblurring is a fundamental preprocessing technique aimed at recovering clear and detailed images from blurry inputs. However, existing methods often struggle to effectively integrate multi-scale feature extraction with frequency enhancement, limiting their ability to reconstruct fine textures, especially in the presence of non-uniform blur. To address these challenges, we propose a multi-scale frequency enhancement network (MFENet) for blind image deblurring. MFENet introduces a multi-scale feature extraction module (MS-FE) based on depth-wise separable convolutions to capture rich multi-scale spatial and channel information. Furthermore, the proposed method employs a frequency enhanced blur perception module (FEBP) that utilizes wavelet transforms to extract high-frequency details and multi-strip pooling to perceive non-uniform blur. Experimental results on the GoPro and HIDE datasets demonstrate that our method achieves superior deblurring performance in both visual quality and objective evaluation metrics. Notably, in downstream object detection tasks, our blind image deblurring algorithm significantly improves detection accuracy, further validating its effectiveness and robustness in practical applications.</p>","PeriodicalId":56303,"journal":{"name":"IET Image Processing","volume":"19 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ipr2.70036","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Image Processing","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ipr2.70036","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Image deblurring is a fundamental preprocessing technique aimed at recovering clear and detailed images from blurry inputs. However, existing methods often struggle to effectively integrate multi-scale feature extraction with frequency enhancement, limiting their ability to reconstruct fine textures, especially in the presence of non-uniform blur. To address these challenges, we propose a multi-scale frequency enhancement network (MFENet) for blind image deblurring. MFENet introduces a multi-scale feature extraction module (MS-FE) based on depth-wise separable convolutions to capture rich multi-scale spatial and channel information. Furthermore, the proposed method employs a frequency enhanced blur perception module (FEBP) that utilizes wavelet transforms to extract high-frequency details and multi-strip pooling to perceive non-uniform blur. Experimental results on the GoPro and HIDE datasets demonstrate that our method achieves superior deblurring performance in both visual quality and objective evaluation metrics. Notably, in downstream object detection tasks, our blind image deblurring algorithm significantly improves detection accuracy, further validating its effectiveness and robustness in practical applications.
期刊介绍:
The IET Image Processing journal encompasses research areas related to the generation, processing and communication of visual information. The focus of the journal is the coverage of the latest research results in image and video processing, including image generation and display, enhancement and restoration, segmentation, colour and texture analysis, coding and communication, implementations and architectures as well as innovative applications.
Principal topics include:
Generation and Display - Imaging sensors and acquisition systems, illumination, sampling and scanning, quantization, colour reproduction, image rendering, display and printing systems, evaluation of image quality.
Processing and Analysis - Image enhancement, restoration, segmentation, registration, multispectral, colour and texture processing, multiresolution processing and wavelets, morphological operations, stereoscopic and 3-D processing, motion detection and estimation, video and image sequence processing.
Implementations and Architectures - Image and video processing hardware and software, design and construction, architectures and software, neural, adaptive, and fuzzy processing.
Coding and Transmission - Image and video compression and coding, compression standards, noise modelling, visual information networks, streamed video.
Retrieval and Multimedia - Storage of images and video, database design, image retrieval, video annotation and editing, mixed media incorporating visual information, multimedia systems and applications, image and video watermarking, steganography.
Applications - Innovative application of image and video processing technologies to any field, including life sciences, earth sciences, astronomy, document processing and security.
Current Special Issue Call for Papers:
Evolutionary Computation for Image Processing - https://digital-library.theiet.org/files/IET_IPR_CFP_EC.pdf
AI-Powered 3D Vision - https://digital-library.theiet.org/files/IET_IPR_CFP_AIPV.pdf
Multidisciplinary advancement of Imaging Technologies: From Medical Diagnostics and Genomics to Cognitive Machine Vision, and Artificial Intelligence - https://digital-library.theiet.org/files/IET_IPR_CFP_IST.pdf
Deep Learning for 3D Reconstruction - https://digital-library.theiet.org/files/IET_IPR_CFP_DLR.pdf