Multi-Scale Frequency Enhancement Network for Blind Image Deblurring

IF 2 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
YaWen Xiang, Heng Zhou, Xi Zhang, ChengYang Li, ZhongBo Li, YongQiang Xie
{"title":"Multi-Scale Frequency Enhancement Network for Blind Image Deblurring","authors":"YaWen Xiang,&nbsp;Heng Zhou,&nbsp;Xi Zhang,&nbsp;ChengYang Li,&nbsp;ZhongBo Li,&nbsp;YongQiang Xie","doi":"10.1049/ipr2.70036","DOIUrl":null,"url":null,"abstract":"<p>Image deblurring is a fundamental preprocessing technique aimed at recovering clear and detailed images from blurry inputs. However, existing methods often struggle to effectively integrate multi-scale feature extraction with frequency enhancement, limiting their ability to reconstruct fine textures, especially in the presence of non-uniform blur. To address these challenges, we propose a multi-scale frequency enhancement network (MFENet) for blind image deblurring. MFENet introduces a multi-scale feature extraction module (MS-FE) based on depth-wise separable convolutions to capture rich multi-scale spatial and channel information. Furthermore, the proposed method employs a frequency enhanced blur perception module (FEBP) that utilizes wavelet transforms to extract high-frequency details and multi-strip pooling to perceive non-uniform blur. Experimental results on the GoPro and HIDE datasets demonstrate that our method achieves superior deblurring performance in both visual quality and objective evaluation metrics. Notably, in downstream object detection tasks, our blind image deblurring algorithm significantly improves detection accuracy, further validating its effectiveness and robustness in practical applications.</p>","PeriodicalId":56303,"journal":{"name":"IET Image Processing","volume":"19 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ipr2.70036","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Image Processing","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ipr2.70036","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Image deblurring is a fundamental preprocessing technique aimed at recovering clear and detailed images from blurry inputs. However, existing methods often struggle to effectively integrate multi-scale feature extraction with frequency enhancement, limiting their ability to reconstruct fine textures, especially in the presence of non-uniform blur. To address these challenges, we propose a multi-scale frequency enhancement network (MFENet) for blind image deblurring. MFENet introduces a multi-scale feature extraction module (MS-FE) based on depth-wise separable convolutions to capture rich multi-scale spatial and channel information. Furthermore, the proposed method employs a frequency enhanced blur perception module (FEBP) that utilizes wavelet transforms to extract high-frequency details and multi-strip pooling to perceive non-uniform blur. Experimental results on the GoPro and HIDE datasets demonstrate that our method achieves superior deblurring performance in both visual quality and objective evaluation metrics. Notably, in downstream object detection tasks, our blind image deblurring algorithm significantly improves detection accuracy, further validating its effectiveness and robustness in practical applications.

Abstract Image

基于多尺度频率增强网络的盲图像去模糊
图像去模糊是一种基本的预处理技术,旨在从模糊的输入中恢复清晰和详细的图像。然而,现有的方法往往难以有效地将多尺度特征提取与频率增强相结合,限制了它们重建精细纹理的能力,特别是在存在不均匀模糊的情况下。为了解决这些挑战,我们提出了一种用于盲图像去模糊的多尺度频率增强网络(MFENet)。MFENet引入了一种基于深度可分卷积的多尺度特征提取模块(MS-FE)来捕获丰富的多尺度空间和信道信息。此外,该方法采用频率增强模糊感知模块(FEBP),利用小波变换提取高频细节,并利用多条带池来感知非均匀模糊。在GoPro和HIDE数据集上的实验结果表明,我们的方法在视觉质量和客观评价指标上都取得了较好的去模糊性能。值得注意的是,在下游目标检测任务中,我们的盲图像去模糊算法显著提高了检测精度,进一步验证了其在实际应用中的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Image Processing
IET Image Processing 工程技术-工程:电子与电气
CiteScore
5.40
自引率
8.70%
发文量
282
审稿时长
6 months
期刊介绍: The IET Image Processing journal encompasses research areas related to the generation, processing and communication of visual information. The focus of the journal is the coverage of the latest research results in image and video processing, including image generation and display, enhancement and restoration, segmentation, colour and texture analysis, coding and communication, implementations and architectures as well as innovative applications. Principal topics include: Generation and Display - Imaging sensors and acquisition systems, illumination, sampling and scanning, quantization, colour reproduction, image rendering, display and printing systems, evaluation of image quality. Processing and Analysis - Image enhancement, restoration, segmentation, registration, multispectral, colour and texture processing, multiresolution processing and wavelets, morphological operations, stereoscopic and 3-D processing, motion detection and estimation, video and image sequence processing. Implementations and Architectures - Image and video processing hardware and software, design and construction, architectures and software, neural, adaptive, and fuzzy processing. Coding and Transmission - Image and video compression and coding, compression standards, noise modelling, visual information networks, streamed video. Retrieval and Multimedia - Storage of images and video, database design, image retrieval, video annotation and editing, mixed media incorporating visual information, multimedia systems and applications, image and video watermarking, steganography. Applications - Innovative application of image and video processing technologies to any field, including life sciences, earth sciences, astronomy, document processing and security. Current Special Issue Call for Papers: Evolutionary Computation for Image Processing - https://digital-library.theiet.org/files/IET_IPR_CFP_EC.pdf AI-Powered 3D Vision - https://digital-library.theiet.org/files/IET_IPR_CFP_AIPV.pdf Multidisciplinary advancement of Imaging Technologies: From Medical Diagnostics and Genomics to Cognitive Machine Vision, and Artificial Intelligence - https://digital-library.theiet.org/files/IET_IPR_CFP_IST.pdf Deep Learning for 3D Reconstruction - https://digital-library.theiet.org/files/IET_IPR_CFP_DLR.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信