{"title":"Exploring various types of biomass as adsorbents for heavy metal remediation: a review","authors":"Bhagya Shree, Sachin Kumari, Sushila Singh, Indu Rani, Ankush Dhanda, Reena Chauhan","doi":"10.1007/s10661-025-13826-9","DOIUrl":null,"url":null,"abstract":"<div><p>The intensifying problem of heavy metal contamination in water sources has led to the need for efficient and sustainable remediation technologies. Biomass-based adsorbents have emerged as a promising solution due to their cost-effectiveness, renewability, and environmental advantages. This review thoroughly analyzes recent advancements in biomass-based adsorbents for heavy metal remediation. It evaluates different types of biomass materials, such as agricultural residues, forestry by-products, and aquatic plants, highlighting their adsorptive capacities, modification techniques, and operational efficiencies. The review also explores the mechanisms of metal uptake, such as ion exchange, adsorption, and complexation, and discusses the performance of different biomass adsorbents. Furthermore, it highlights the key challenges and limitations associated with biomass-based adsorbents, such as regeneration issues, stability concerns, and scalability. By consolidating current research and technological developments, this review aims to offer insights into optimizing biomass-based adsorbents for practical applications and outlining future research directions in heavy metal remediation.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":544,"journal":{"name":"Environmental Monitoring and Assessment","volume":"197 4","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Monitoring and Assessment","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10661-025-13826-9","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The intensifying problem of heavy metal contamination in water sources has led to the need for efficient and sustainable remediation technologies. Biomass-based adsorbents have emerged as a promising solution due to their cost-effectiveness, renewability, and environmental advantages. This review thoroughly analyzes recent advancements in biomass-based adsorbents for heavy metal remediation. It evaluates different types of biomass materials, such as agricultural residues, forestry by-products, and aquatic plants, highlighting their adsorptive capacities, modification techniques, and operational efficiencies. The review also explores the mechanisms of metal uptake, such as ion exchange, adsorption, and complexation, and discusses the performance of different biomass adsorbents. Furthermore, it highlights the key challenges and limitations associated with biomass-based adsorbents, such as regeneration issues, stability concerns, and scalability. By consolidating current research and technological developments, this review aims to offer insights into optimizing biomass-based adsorbents for practical applications and outlining future research directions in heavy metal remediation.
期刊介绍:
Environmental Monitoring and Assessment emphasizes technical developments and data arising from environmental monitoring and assessment, the use of scientific principles in the design of monitoring systems at the local, regional and global scales, and the use of monitoring data in assessing the consequences of natural resource management actions and pollution risks to man and the environment.