Predicting the solid–liquid phase diagram of a ternary system with cocrystal formation†

IF 2.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
CrystEngComm Pub Date : 2025-02-12 DOI:10.1039/D4CE01256A
Sahar Nasrallah, Ahmad Alhadid and Mirjana Minceva
{"title":"Predicting the solid–liquid phase diagram of a ternary system with cocrystal formation†","authors":"Sahar Nasrallah, Ahmad Alhadid and Mirjana Minceva","doi":"10.1039/D4CE01256A","DOIUrl":null,"url":null,"abstract":"<p >Cocrystals are commonly synthesized to improve a target solute's physicochemical properties. Solvent-based cocrystallization is the most widely used process to obtain cocrystals. Developing and scaling up the production of cocrystals by solvent-based methods require the knowledge of the solid–liquid equilibrium (SLE) phase diagram of the target solute/coformer/solvent system. However, the experimental determination of the complete SLE phase diagram of a ternary system at different temperatures over the entire composition range is tedious. In this work, we propose a thermodynamic approach to predict the SLE phase diagram of a ternary system with cocrystal formation. First, the solubility of the coformer and cocrystals in the solvent is measured at different temperatures. Second, these data are fitted to obtain the binary interaction parameters of the non-random two-liquid (NRTL) model. Finally, the SLE phase diagram of the target solute/coformer/solvent system at different temperatures is predicted, utilizing the activity coefficients of the components and the melting properties of the cocrystal. Two systems were used to validate the approach: choline chloride (ChCl)/catechol/acetonitrile with ChCl : catechol 1 : 1 and 1 : 2 cocrystals and tetramethyl ammonium chloride (TMACl)/catechol/acetonitrile with TMACl : catechol 1 : 1 and 1 : 2 cocrystals. The proposed approach predicted the SLE phase diagram of the two systems, unraveling the solubility of catechol and the cocrystals of the two systems in acetonitrile as well as the dissolution behavior of the cocrystals, <em>i.e.</em>, congruent or incongruent dissolution. The proposed methodology highlights the benefit of using thermodynamic modeling for cocrystal engineering and design.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 12","pages":" 1796-1805"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ce/d4ce01256a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CrystEngComm","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ce/d4ce01256a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Cocrystals are commonly synthesized to improve a target solute's physicochemical properties. Solvent-based cocrystallization is the most widely used process to obtain cocrystals. Developing and scaling up the production of cocrystals by solvent-based methods require the knowledge of the solid–liquid equilibrium (SLE) phase diagram of the target solute/coformer/solvent system. However, the experimental determination of the complete SLE phase diagram of a ternary system at different temperatures over the entire composition range is tedious. In this work, we propose a thermodynamic approach to predict the SLE phase diagram of a ternary system with cocrystal formation. First, the solubility of the coformer and cocrystals in the solvent is measured at different temperatures. Second, these data are fitted to obtain the binary interaction parameters of the non-random two-liquid (NRTL) model. Finally, the SLE phase diagram of the target solute/coformer/solvent system at different temperatures is predicted, utilizing the activity coefficients of the components and the melting properties of the cocrystal. Two systems were used to validate the approach: choline chloride (ChCl)/catechol/acetonitrile with ChCl : catechol 1 : 1 and 1 : 2 cocrystals and tetramethyl ammonium chloride (TMACl)/catechol/acetonitrile with TMACl : catechol 1 : 1 and 1 : 2 cocrystals. The proposed approach predicted the SLE phase diagram of the two systems, unraveling the solubility of catechol and the cocrystals of the two systems in acetonitrile as well as the dissolution behavior of the cocrystals, i.e., congruent or incongruent dissolution. The proposed methodology highlights the benefit of using thermodynamic modeling for cocrystal engineering and design.

Abstract Image

预测具有共晶形成的三元体系的固液相图
合成共晶通常是为了改善目标溶质的物理化学性质。溶剂基共晶是获得共晶最广泛的方法。通过基于溶剂的方法开发和扩大共晶的生产需要了解目标溶质/共成体/溶剂系统的固液平衡(SLE)相图。然而,在整个组成范围内不同温度下三元体系的完整SLE相图的实验测定是繁琐的。在这项工作中,我们提出了一种热力学方法来预测具有共晶形成的三元体系的SLE相图。首先,测量了在不同温度下共成体和共晶在溶剂中的溶解度。其次,对这些数据进行拟合,得到非随机双液(NRTL)模型的二元相互作用参数。最后,利用组分的活度系数和共晶的熔融特性,预测了目标溶质/共晶/溶剂体系在不同温度下的SLE相图。采用氯化胆碱(ChCl)/儿茶酚/乙腈(ChCl:儿茶酚1:1和1:2共晶)和四甲基氯化铵(TMACl)/儿茶酚/乙腈(TMACl:儿茶酚1:1和1:2共晶)两种体系对方法进行验证。该方法预测了两种体系的SLE相图,揭示了儿茶酚和两种体系的共晶在乙腈中的溶解度,以及共晶的溶解行为,即全等溶解或不全等溶解。所提出的方法强调了在共晶工程和设计中使用热力学建模的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CrystEngComm
CrystEngComm 化学-化学综合
CiteScore
5.50
自引率
9.70%
发文量
747
审稿时长
1.7 months
期刊介绍: Design and understanding of solid-state and crystalline materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信