Synergistic advantages of In-MOF/Bi2MoO6 composites in photocatalytic CO2 reduction: enhanced light absorption, charge separation and reactivity†

IF 2.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
CrystEngComm Pub Date : 2025-03-05 DOI:10.1039/D4CE01285B
Xiao Zhang, Xiong He, Meng-Yao Ye, Bei-Bei Yuan, Song-Fang Zhao and Kui Li
{"title":"Synergistic advantages of In-MOF/Bi2MoO6 composites in photocatalytic CO2 reduction: enhanced light absorption, charge separation and reactivity†","authors":"Xiao Zhang, Xiong He, Meng-Yao Ye, Bei-Bei Yuan, Song-Fang Zhao and Kui Li","doi":"10.1039/D4CE01285B","DOIUrl":null,"url":null,"abstract":"<p >The development of highly efficient photocatalysts for the reduction of CO<small><sub>2</sub></small> holds paramount importance in addressing the pressing global energy and environmental challenges. In this meticulously conducted study, we successfully fabricated a novel composite consisting of In-MOF and Bi<small><sub>2</sub></small>MoO<small><sub>6</sub></small>, and comprehensively investigated its photocatalytic performance in the context of CO<small><sub>2</sub></small> reduction. The formation of a heterojunction between the In-MOF and Bi<small><sub>2</sub></small>MoO<small><sub>6</sub></small> facilitated efficient charge separation and transfer processes. The internal electric field present at the interface of the heterojunction drove the photogenerated electrons and holes to migrate in opposite directions, effectively mitigating their recombination rate. Consequently, a greater abundance of reactive species was available to participate in the CO<small><sub>2</sub></small> reduction reaction. The combined effects of enhanced light absorption and efficient charge separation culminated in a higher yield of CO and CH<small><sub>4</sub></small> compared to the individual components. This study provides some references and insights into the design and manufacture of high-performance photocatalysts.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 12","pages":" 1694-1700"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CrystEngComm","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ce/d4ce01285b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of highly efficient photocatalysts for the reduction of CO2 holds paramount importance in addressing the pressing global energy and environmental challenges. In this meticulously conducted study, we successfully fabricated a novel composite consisting of In-MOF and Bi2MoO6, and comprehensively investigated its photocatalytic performance in the context of CO2 reduction. The formation of a heterojunction between the In-MOF and Bi2MoO6 facilitated efficient charge separation and transfer processes. The internal electric field present at the interface of the heterojunction drove the photogenerated electrons and holes to migrate in opposite directions, effectively mitigating their recombination rate. Consequently, a greater abundance of reactive species was available to participate in the CO2 reduction reaction. The combined effects of enhanced light absorption and efficient charge separation culminated in a higher yield of CO and CH4 compared to the individual components. This study provides some references and insights into the design and manufacture of high-performance photocatalysts.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CrystEngComm
CrystEngComm 化学-化学综合
CiteScore
5.50
自引率
9.70%
发文量
747
审稿时长
1.7 months
期刊介绍: Design and understanding of solid-state and crystalline materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信