PRFE-driven gene selection with multi-classifier ensemble for cancer classification

IF 5 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Smitirekha Behuria , Sujata Swain , Anjan Bandyopadhyay , Mohammad Khalid Al-Sadoon , Saurav Mallik
{"title":"PRFE-driven gene selection with multi-classifier ensemble for cancer classification","authors":"Smitirekha Behuria ,&nbsp;Sujata Swain ,&nbsp;Anjan Bandyopadhyay ,&nbsp;Mohammad Khalid Al-Sadoon ,&nbsp;Saurav Mallik","doi":"10.1016/j.eij.2025.100637","DOIUrl":null,"url":null,"abstract":"<div><div>In this era, cancer remains a paramount concern due to its pervasive impact on individuals and societies, persistent challenges in treatment and prevention, and the ongoing need for global collaboration and innovation to improve outcomes and reduce its burden. Cancer marked by uncontrolled cell growth is a leading global cause of mortality, necessitating advanced methods for accurate diagnosis. This study introduces an innovative unsupervised feature selection technique Principal Recursive Feature Eliminator (PRFE) for selection of genes and cancer classification. Subsequently, seven different classifiers—Support Vector Machine, Random Forest, CatBoost, Light Gradient Boosting Method, Artificial Neural Network, Convolutional Neural Network, Long Short-Term Memory are used to increase the model’s robustness. The proposed approach is evaluated on nine benchmark gene expression datasets with a combination of two different algorithms. A series of experiments are conducted to assess the proposed method, focusing on the selected features and identifying optimal classifiers. We have calculated F1-Score, accuracy, recall, and precision. The suggested strategy performs better than expected, as the results highlight its potential to improve cancer classification techniques with an accuracy of 99.98%. We conclude from this analysis that, across many datasets, the CatBoost and CNN model outperforms the other models. This research contributes to the ongoing efforts to improve diagnostic precision and treatment outcomes in cancer research.</div></div>","PeriodicalId":56010,"journal":{"name":"Egyptian Informatics Journal","volume":"30 ","pages":"Article 100637"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Informatics Journal","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110866525000301","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In this era, cancer remains a paramount concern due to its pervasive impact on individuals and societies, persistent challenges in treatment and prevention, and the ongoing need for global collaboration and innovation to improve outcomes and reduce its burden. Cancer marked by uncontrolled cell growth is a leading global cause of mortality, necessitating advanced methods for accurate diagnosis. This study introduces an innovative unsupervised feature selection technique Principal Recursive Feature Eliminator (PRFE) for selection of genes and cancer classification. Subsequently, seven different classifiers—Support Vector Machine, Random Forest, CatBoost, Light Gradient Boosting Method, Artificial Neural Network, Convolutional Neural Network, Long Short-Term Memory are used to increase the model’s robustness. The proposed approach is evaluated on nine benchmark gene expression datasets with a combination of two different algorithms. A series of experiments are conducted to assess the proposed method, focusing on the selected features and identifying optimal classifiers. We have calculated F1-Score, accuracy, recall, and precision. The suggested strategy performs better than expected, as the results highlight its potential to improve cancer classification techniques with an accuracy of 99.98%. We conclude from this analysis that, across many datasets, the CatBoost and CNN model outperforms the other models. This research contributes to the ongoing efforts to improve diagnostic precision and treatment outcomes in cancer research.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Egyptian Informatics Journal
Egyptian Informatics Journal Decision Sciences-Management Science and Operations Research
CiteScore
11.10
自引率
1.90%
发文量
59
审稿时长
110 days
期刊介绍: The Egyptian Informatics Journal is published by the Faculty of Computers and Artificial Intelligence, Cairo University. This Journal provides a forum for the state-of-the-art research and development in the fields of computing, including computer sciences, information technologies, information systems, operations research and decision support. Innovative and not-previously-published work in subjects covered by the Journal is encouraged to be submitted, whether from academic, research or commercial sources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信