Robust Compact Human Pose Learning Against Open-World Visual Perturbations

IF 11.7 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Jiahui Yu;Xuna Wang;Yuping Guo;Weiming Fan;Zhiyong Wang
{"title":"Robust Compact Human Pose Learning Against Open-World Visual Perturbations","authors":"Jiahui Yu;Xuna Wang;Yuping Guo;Weiming Fan;Zhiyong Wang","doi":"10.1109/TII.2025.3545105","DOIUrl":null,"url":null,"abstract":"Skeleton-based action recognition has achieved remarkable progress. However, in open-world scenarios, limited human visual labels, drifting skeletal structures, and novel action categories introduce complex visual disturbances that severely limit the robustness of pose representations. Herein, we propose UnicornPose, a Universal Compact Human Pose Representation, that learns robust skeleton correlations and recognizes action across various open-world scenarios. The core advantages include: 1) Continuously modeling human skeletal structures along the action timeline to construct a rich feature volume of human poses, ensuring sufficient information for universal representation. 2) Utilizing a multiview decoupling method to compress visual information further, obtaining robust pose representations that facilitate easier generalization across different open-world scenarios. 3) Coherence training and regularization constraint methods should be employed to enhance the generalization capability of noise-containing pose representations. These contributions enable UnicornPose to effectively counter noise interference and surpass the existing top results by 3-4%.","PeriodicalId":13301,"journal":{"name":"IEEE Transactions on Industrial Informatics","volume":"21 6","pages":"4789-4797"},"PeriodicalIF":11.7000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Industrial Informatics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10926587/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Skeleton-based action recognition has achieved remarkable progress. However, in open-world scenarios, limited human visual labels, drifting skeletal structures, and novel action categories introduce complex visual disturbances that severely limit the robustness of pose representations. Herein, we propose UnicornPose, a Universal Compact Human Pose Representation, that learns robust skeleton correlations and recognizes action across various open-world scenarios. The core advantages include: 1) Continuously modeling human skeletal structures along the action timeline to construct a rich feature volume of human poses, ensuring sufficient information for universal representation. 2) Utilizing a multiview decoupling method to compress visual information further, obtaining robust pose representations that facilitate easier generalization across different open-world scenarios. 3) Coherence training and regularization constraint methods should be employed to enhance the generalization capability of noise-containing pose representations. These contributions enable UnicornPose to effectively counter noise interference and surpass the existing top results by 3-4%.
针对开放世界视觉干扰的鲁棒紧凑型人体姿态学习
基于骨骼的动作识别已经取得了显著的进展。然而,在开放世界场景中,有限的人类视觉标签、漂移的骨骼结构和新的动作类别引入了复杂的视觉干扰,严重限制了姿态表示的鲁棒性。在此,我们提出了UnicornPose,一种通用紧凑的人体姿势表示,它可以学习强大的骨骼相关性,并识别各种开放世界场景中的动作。核心优势包括:1)沿着动作时间线连续建模人体骨骼结构,构建丰富的人体姿势特征体,保证足够的信息进行普遍表征。2)利用多视图解耦方法进一步压缩视觉信息,获得鲁棒的姿态表示,方便不同开放世界场景的泛化。3)采用相干性训练和正则化约束方法增强含噪声姿态表示的泛化能力。这些贡献使UnicornPose能够有效地对抗噪声干扰,并比现有的最佳结果高出3-4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Industrial Informatics
IEEE Transactions on Industrial Informatics 工程技术-工程:工业
CiteScore
24.10
自引率
8.90%
发文量
1202
审稿时长
5.1 months
期刊介绍: The IEEE Transactions on Industrial Informatics is a multidisciplinary journal dedicated to publishing technical papers that connect theory with practical applications of informatics in industrial settings. It focuses on the utilization of information in intelligent, distributed, and agile industrial automation and control systems. The scope includes topics such as knowledge-based and AI-enhanced automation, intelligent computer control systems, flexible and collaborative manufacturing, industrial informatics in software-defined vehicles and robotics, computer vision, industrial cyber-physical and industrial IoT systems, real-time and networked embedded systems, security in industrial processes, industrial communications, systems interoperability, and human-machine interaction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信