Sensitivity-Aware Personalized Differential Privacy Guarantees for Online Social Networks

IF 6.3 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Jiajun Chen;Chunqiang Hu;Weihong Sheng;Tao Xiang;Pengfei Hu;Jiguo Yu
{"title":"Sensitivity-Aware Personalized Differential Privacy Guarantees for Online Social Networks","authors":"Jiajun Chen;Chunqiang Hu;Weihong Sheng;Tao Xiang;Pengfei Hu;Jiguo Yu","doi":"10.1109/TIFS.2025.3551642","DOIUrl":null,"url":null,"abstract":"With the prevalence of online social networks (OSNs), much personal information is collected and maintained by trusted service providers for third-party queries and analyses. Existing works regarding differentially private social network data publication overlook the fact that different users exhibit distinct privacy preferences or sensitivity inclinations. Neglecting these individual nuances may lead to privacy mechanisms that are overly conservative or inadequately protective. Furthermore, the injection of excessive noise into OSN data perceived by users as non-personal or less sensitive can incur additional privacy costs, resulting in lower service quality. This paper introduces a fine-grained, sensitivity-aware personalized edge differential privacy model (SPEDP) for OSNs. Specifically, SPEDP enables each OSN user to individually define the sensitivity level of their social connections, facilitating user-friendly personalized privacy settings. We design a privacy-aware mechanism that operates within a trusted service provider, capable of establishing privacy protection levels based on user-perceived sensitivity settings. Additionally, we propose a sensitivity-aware sampling mechanism to implement SPEDP. To further optimize the privacy mechanism, we explore a privacy threshold optimization strategy aimed at minimizing privacy budget waste. Finally, the personalized privacy protections and utility improvements achieved by the SPEDP mechanism are rigorously validated through theoretical analysis and comprehensive comparative experiments on benchmark datasets.","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"20 ","pages":"3116-3130"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Forensics and Security","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10926530/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

With the prevalence of online social networks (OSNs), much personal information is collected and maintained by trusted service providers for third-party queries and analyses. Existing works regarding differentially private social network data publication overlook the fact that different users exhibit distinct privacy preferences or sensitivity inclinations. Neglecting these individual nuances may lead to privacy mechanisms that are overly conservative or inadequately protective. Furthermore, the injection of excessive noise into OSN data perceived by users as non-personal or less sensitive can incur additional privacy costs, resulting in lower service quality. This paper introduces a fine-grained, sensitivity-aware personalized edge differential privacy model (SPEDP) for OSNs. Specifically, SPEDP enables each OSN user to individually define the sensitivity level of their social connections, facilitating user-friendly personalized privacy settings. We design a privacy-aware mechanism that operates within a trusted service provider, capable of establishing privacy protection levels based on user-perceived sensitivity settings. Additionally, we propose a sensitivity-aware sampling mechanism to implement SPEDP. To further optimize the privacy mechanism, we explore a privacy threshold optimization strategy aimed at minimizing privacy budget waste. Finally, the personalized privacy protections and utility improvements achieved by the SPEDP mechanism are rigorously validated through theoretical analysis and comprehensive comparative experiments on benchmark datasets.
敏感感知的在线社交网络个性化差异隐私保障
随着在线社交网络(osn)的普及,许多个人信息被可信的服务提供商收集和维护,以供第三方查询和分析。现有关于社交网络数据发布差异隐私的研究忽略了不同用户表现出不同的隐私偏好或敏感倾向。忽视这些个体的细微差别可能会导致隐私机制过于保守或保护不足。此外,在用户认为非个人或不太敏感的OSN数据中注入过多的噪声会增加额外的隐私成本,从而降低服务质量。本文介绍了一种用于osn的细粒度、敏感的个性化边缘差分隐私模型(SPEDP)。SPEDP允许每个OSN用户自行定义其社交关系的敏感级别,方便用户进行个性化的隐私设置。我们设计了一种隐私感知机制,该机制在受信任的服务提供商内运行,能够根据用户感知的敏感性设置建立隐私保护级别。此外,我们提出了一种灵敏度感知的采样机制来实现SPEDP。为了进一步优化隐私机制,我们探索了一种以最小化隐私预算浪费为目标的隐私阈值优化策略。最后,通过理论分析和基准数据集的综合对比实验,对SPEDP机制实现的个性化隐私保护和效用提升进行了严格验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Information Forensics and Security
IEEE Transactions on Information Forensics and Security 工程技术-工程:电子与电气
CiteScore
14.40
自引率
7.40%
发文量
234
审稿时长
6.5 months
期刊介绍: The IEEE Transactions on Information Forensics and Security covers the sciences, technologies, and applications relating to information forensics, information security, biometrics, surveillance and systems applications that incorporate these features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信