DenseFormer-MoE: A Dense Transformer Foundation Model with Mixture of Experts for Multi-Task Brain Image Analysis.

Rizhi Ding, Hui Lu, Manhua Liu
{"title":"DenseFormer-MoE: A Dense Transformer Foundation Model with Mixture of Experts for Multi-Task Brain Image Analysis.","authors":"Rizhi Ding, Hui Lu, Manhua Liu","doi":"10.1109/TMI.2025.3551514","DOIUrl":null,"url":null,"abstract":"<p><p>Deep learning models have been widely investigated for computing and analyzing brain images across various downstream tasks such as disease diagnosis and age regression. Most existing models are tailored for specific tasks and diseases, posing a challenge in developing a foundation model for diverse tasks. This paper proposes a Dense Transformer Foundation Model with Mixture of Experts (DenseFormer-MoE), which integrates dense convolutional network, Vision Transformer and Mixture of Experts (MoE) to progressively learn and consolidate local and global features from T1-weighted magnetic resonance images (sMRI) for multiple tasks including diagnosing multiple brain diseases and predicting brain age. First, a foundation model is built by combining the vision Transformer with Densenet, which are pre-trained with Masked Autoencoder and self-supervised learning to enhance the generalization of feature representations. Then, to mitigate optimization conflicts in multi-task learning, MoE is designed to dynamically select the most appropriate experts for each task. Finally, our method is evaluated on multiple renowned brain imaging datasets including UK Biobank (UKB), Alzheimer's Disease Neuroimaging Initiative (ADNI), and Parkinson's Progression Markers Initiative (PPMI). Experimental results and comparison demonstrate that our method achieves promising performances for prediction of brain age and diagnosis of brain diseases.</p>","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TMI.2025.3551514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning models have been widely investigated for computing and analyzing brain images across various downstream tasks such as disease diagnosis and age regression. Most existing models are tailored for specific tasks and diseases, posing a challenge in developing a foundation model for diverse tasks. This paper proposes a Dense Transformer Foundation Model with Mixture of Experts (DenseFormer-MoE), which integrates dense convolutional network, Vision Transformer and Mixture of Experts (MoE) to progressively learn and consolidate local and global features from T1-weighted magnetic resonance images (sMRI) for multiple tasks including diagnosing multiple brain diseases and predicting brain age. First, a foundation model is built by combining the vision Transformer with Densenet, which are pre-trained with Masked Autoencoder and self-supervised learning to enhance the generalization of feature representations. Then, to mitigate optimization conflicts in multi-task learning, MoE is designed to dynamically select the most appropriate experts for each task. Finally, our method is evaluated on multiple renowned brain imaging datasets including UK Biobank (UKB), Alzheimer's Disease Neuroimaging Initiative (ADNI), and Parkinson's Progression Markers Initiative (PPMI). Experimental results and comparison demonstrate that our method achieves promising performances for prediction of brain age and diagnosis of brain diseases.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信