Mechanisms of toxicity caused by bisphenol analogs in human in vitro cell models

IF 4.7 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Rafia Afroze Rifa, Macarena Gisele Rojo, Ramon Lavado
{"title":"Mechanisms of toxicity caused by bisphenol analogs in human in vitro cell models","authors":"Rafia Afroze Rifa,&nbsp;Macarena Gisele Rojo,&nbsp;Ramon Lavado","doi":"10.1016/j.cbi.2025.111475","DOIUrl":null,"url":null,"abstract":"<div><div>Bisphenol analogs, structurally similar to bisphenol A (BPA), are widely used in various industries as a safer alternative to BPA. However, these alternatives also present risks, such as inflammation and potential connections to chronic diseases like cancer and diabetes, highlighting the need for further research into their toxicity mechanisms. Building on our previous cytotoxicity research, this study delves into the mechanisms of toxicity associated with bisphenol analogs (bisphenol AF, bisphenol AP, bisphenol E, and bisphenol P) on human <em>in vitro</em> cell models (HepaRG, Caco-2, HMC3, and HMEC-1). In this study, we assessed the impact of these compounds on key cellular stress markers: reactive oxygen species (ROS) production, mitochondrial membrane potential (ΔΨm), and mitochondrial calcium levels. Results revealed dose-dependent increases in oxidative stress and decrease in mitochondrial membrane potential (ΔΨm), with Caco-2 cells (enterocytes) exhibiting the highest sensitivity, indicating tissue-specific vulnerability. Notably, bisphenol AF, bisphenol AP and bisphenol P were identified as the most potent analogs in inducing ROS, affecting mitochondrial integrity and calcium homeostasis among all cell models. This research highlights the importance of understanding analog-specific and cell-specific responses to bisphenol compounds, providing a foundation for improved regulatory strategies to mitigate health risks associated with their exposure.</div></div>","PeriodicalId":274,"journal":{"name":"Chemico-Biological Interactions","volume":"412 ","pages":"Article 111475"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemico-Biological Interactions","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000927972500105X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bisphenol analogs, structurally similar to bisphenol A (BPA), are widely used in various industries as a safer alternative to BPA. However, these alternatives also present risks, such as inflammation and potential connections to chronic diseases like cancer and diabetes, highlighting the need for further research into their toxicity mechanisms. Building on our previous cytotoxicity research, this study delves into the mechanisms of toxicity associated with bisphenol analogs (bisphenol AF, bisphenol AP, bisphenol E, and bisphenol P) on human in vitro cell models (HepaRG, Caco-2, HMC3, and HMEC-1). In this study, we assessed the impact of these compounds on key cellular stress markers: reactive oxygen species (ROS) production, mitochondrial membrane potential (ΔΨm), and mitochondrial calcium levels. Results revealed dose-dependent increases in oxidative stress and decrease in mitochondrial membrane potential (ΔΨm), with Caco-2 cells (enterocytes) exhibiting the highest sensitivity, indicating tissue-specific vulnerability. Notably, bisphenol AF, bisphenol AP and bisphenol P were identified as the most potent analogs in inducing ROS, affecting mitochondrial integrity and calcium homeostasis among all cell models. This research highlights the importance of understanding analog-specific and cell-specific responses to bisphenol compounds, providing a foundation for improved regulatory strategies to mitigate health risks associated with their exposure.

Abstract Image

人体外细胞模型中双酚类似物引起的毒性机制。
双酚类似物在结构上与双酚A (BPA)相似,作为一种更安全的替代品被广泛应用于各个行业。然而,这些替代品也存在风险,例如炎症以及与癌症和糖尿病等慢性疾病的潜在联系,因此需要进一步研究它们的毒性机制。在我们之前的细胞毒性研究的基础上,本研究深入探讨了双酚类似物(双酚AF、双酚AP、双酚E和双酚P)对人体外细胞模型(HepaRG、Caco-2、HMC3和HMEC-1)的毒性机制。在这项研究中,我们评估了这些化合物对关键细胞应激标志物的影响:活性氧(ROS)产生、线粒体膜电位(ΔΨm)和线粒体钙水平。结果显示氧化应激呈剂量依赖性增加,线粒体膜电位降低(ΔΨm), Caco-2细胞(肠细胞)表现出最高的敏感性,表明组织特异性易感性。值得注意的是,在所有细胞模型中,双酚AF、双酚AP和双酚P被认为是诱导ROS最有效的类似物,影响线粒体完整性和钙稳态。这项研究强调了理解双酚化合物对类似物特异性和细胞特异性反应的重要性,为改进监管策略以减轻与双酚化合物暴露相关的健康风险提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
3.90%
发文量
410
审稿时长
36 days
期刊介绍: Chemico-Biological Interactions publishes research reports and review articles that examine the molecular, cellular, and/or biochemical basis of toxicologically relevant outcomes. Special emphasis is placed on toxicological mechanisms associated with interactions between chemicals and biological systems. Outcomes may include all traditional endpoints caused by synthetic or naturally occurring chemicals, both in vivo and in vitro. Endpoints of interest include, but are not limited to carcinogenesis, mutagenesis, respiratory toxicology, neurotoxicology, reproductive and developmental toxicology, and immunotoxicology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信