Mechanisms of toxicity caused by bisphenol analogs in human in vitro cell models

IF 4.7 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Rafia Afroze Rifa, Macarena Gisele Rojo, Ramon Lavado
{"title":"Mechanisms of toxicity caused by bisphenol analogs in human in vitro cell models","authors":"Rafia Afroze Rifa,&nbsp;Macarena Gisele Rojo,&nbsp;Ramon Lavado","doi":"10.1016/j.cbi.2025.111475","DOIUrl":null,"url":null,"abstract":"<div><div>Bisphenol analogs, structurally similar to bisphenol A (BPA), are widely used in various industries as a safer alternative to BPA. However, these alternatives also present risks, such as inflammation and potential connections to chronic diseases like cancer and diabetes, highlighting the need for further research into their toxicity mechanisms. Building on our previous cytotoxicity research, this study delves into the mechanisms of toxicity associated with bisphenol analogs (bisphenol AF, bisphenol AP, bisphenol E, and bisphenol P) on human <em>in vitro</em> cell models (HepaRG, Caco-2, HMC3, and HMEC-1). In this study, we assessed the impact of these compounds on key cellular stress markers: reactive oxygen species (ROS) production, mitochondrial membrane potential (ΔΨm), and mitochondrial calcium levels. Results revealed dose-dependent increases in oxidative stress and decrease in mitochondrial membrane potential (ΔΨm), with Caco-2 cells (enterocytes) exhibiting the highest sensitivity, indicating tissue-specific vulnerability. Notably, bisphenol AF, bisphenol AP and bisphenol P were identified as the most potent analogs in inducing ROS, affecting mitochondrial integrity and calcium homeostasis among all cell models. This research highlights the importance of understanding analog-specific and cell-specific responses to bisphenol compounds, providing a foundation for improved regulatory strategies to mitigate health risks associated with their exposure.</div></div>","PeriodicalId":274,"journal":{"name":"Chemico-Biological Interactions","volume":"412 ","pages":"Article 111475"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemico-Biological Interactions","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000927972500105X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bisphenol analogs, structurally similar to bisphenol A (BPA), are widely used in various industries as a safer alternative to BPA. However, these alternatives also present risks, such as inflammation and potential connections to chronic diseases like cancer and diabetes, highlighting the need for further research into their toxicity mechanisms. Building on our previous cytotoxicity research, this study delves into the mechanisms of toxicity associated with bisphenol analogs (bisphenol AF, bisphenol AP, bisphenol E, and bisphenol P) on human in vitro cell models (HepaRG, Caco-2, HMC3, and HMEC-1). In this study, we assessed the impact of these compounds on key cellular stress markers: reactive oxygen species (ROS) production, mitochondrial membrane potential (ΔΨm), and mitochondrial calcium levels. Results revealed dose-dependent increases in oxidative stress and decrease in mitochondrial membrane potential (ΔΨm), with Caco-2 cells (enterocytes) exhibiting the highest sensitivity, indicating tissue-specific vulnerability. Notably, bisphenol AF, bisphenol AP and bisphenol P were identified as the most potent analogs in inducing ROS, affecting mitochondrial integrity and calcium homeostasis among all cell models. This research highlights the importance of understanding analog-specific and cell-specific responses to bisphenol compounds, providing a foundation for improved regulatory strategies to mitigate health risks associated with their exposure.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
3.90%
发文量
410
审稿时长
36 days
期刊介绍: Chemico-Biological Interactions publishes research reports and review articles that examine the molecular, cellular, and/or biochemical basis of toxicologically relevant outcomes. Special emphasis is placed on toxicological mechanisms associated with interactions between chemicals and biological systems. Outcomes may include all traditional endpoints caused by synthetic or naturally occurring chemicals, both in vivo and in vitro. Endpoints of interest include, but are not limited to carcinogenesis, mutagenesis, respiratory toxicology, neurotoxicology, reproductive and developmental toxicology, and immunotoxicology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信