{"title":"Evaluation of hypoxia pathway genes and serum parameters in new coronavirus pneumonia (COVID-19)","authors":"Mesut Oterkus , Mukaddes Pala , Senay Gorucu Yilmaz , Elif Seren Tanriverdi , Ayten Gunduz , Leman Acun Delen , Dilara Altay Ozturk , Cihan Döger","doi":"10.1016/j.gene.2025.149395","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Coronavirus disease-2019 (COVID-19) causes severe hypoxemia. Unlike normal pneumonia, pneumonia due to COVID-19 causes oxygen deprivation without breathing difficulties (i.e., silent hypoxia). We evaluated the relationship between COVID-19 and hypoxemia and examined possible mechanisms of pneumonia from the perspective of gene expression (HIF1A, vascular endothelial growth factor [VEGF], NF-kB, MEKK1, and EGFR) using real-time PCR and ELISA for serum parameters.</div></div><div><h3>Methods</h3><div>We evaluated 100 individuals (50 patients and 50 controls). The patients were individuals with respiratory symptoms and pneumonia who were COVİD-19 positive. The relative quantification of standardized samples wa s calculated according to the formula 2 <sup>-ΔΔCT</sup>. Receiver operating curve (ROC) analysis was made to define the diagnostic power of the genes. The expression changes of four genes in the hypoxia pathway were significant (excluding VEGF) and upregulated in the patients’ serums.</div></div><div><h3>Results</h3><div>The fold change values of the HIF1A, VEGF, NF-kB, MEKK1, and EGFR genes were 0.048, 0.688, 0.168, 0.207, and 0.171, respectively, in the cases checked against to the controls. The areas under the ROC values indicating the diagnostic power of the genes were 0.727, 0.538, 0.815, 0.734, and 0.936, respectively. Some serum parameters were significant (age, PCR, urea, LDH, WBC, ferritin, and pO<sub>2</sub>).</div></div><div><h3>Conclusions</h3><div>The upregulation of some genes in the hypoxia pathway in COVID-19 pneumonia shows that these genes and protein products are candidates for treatment targets. At the same time, the high discriminative power of two genes (NF-κB and EGFR) in patients compared to controls indicates their diagnostic potential in serum samples.</div></div>","PeriodicalId":12499,"journal":{"name":"Gene","volume":"955 ","pages":"Article 149395"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378111925001830","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Coronavirus disease-2019 (COVID-19) causes severe hypoxemia. Unlike normal pneumonia, pneumonia due to COVID-19 causes oxygen deprivation without breathing difficulties (i.e., silent hypoxia). We evaluated the relationship between COVID-19 and hypoxemia and examined possible mechanisms of pneumonia from the perspective of gene expression (HIF1A, vascular endothelial growth factor [VEGF], NF-kB, MEKK1, and EGFR) using real-time PCR and ELISA for serum parameters.
Methods
We evaluated 100 individuals (50 patients and 50 controls). The patients were individuals with respiratory symptoms and pneumonia who were COVİD-19 positive. The relative quantification of standardized samples wa s calculated according to the formula 2 -ΔΔCT. Receiver operating curve (ROC) analysis was made to define the diagnostic power of the genes. The expression changes of four genes in the hypoxia pathway were significant (excluding VEGF) and upregulated in the patients’ serums.
Results
The fold change values of the HIF1A, VEGF, NF-kB, MEKK1, and EGFR genes were 0.048, 0.688, 0.168, 0.207, and 0.171, respectively, in the cases checked against to the controls. The areas under the ROC values indicating the diagnostic power of the genes were 0.727, 0.538, 0.815, 0.734, and 0.936, respectively. Some serum parameters were significant (age, PCR, urea, LDH, WBC, ferritin, and pO2).
Conclusions
The upregulation of some genes in the hypoxia pathway in COVID-19 pneumonia shows that these genes and protein products are candidates for treatment targets. At the same time, the high discriminative power of two genes (NF-κB and EGFR) in patients compared to controls indicates their diagnostic potential in serum samples.
期刊介绍:
Gene publishes papers that focus on the regulation, expression, function and evolution of genes in all biological contexts, including all prokaryotic and eukaryotic organisms, as well as viruses.