Chrysophanol delays aging via insulin/IGF-1 signaling pathway

IF 7.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Hongjiao Zhang , Jun Xiong , Qingyao Wang , Qiuyu Song , Lingjie Meng , Han Zhang , Yuxin Bao , Fang Liu , Yi Xiao
{"title":"Chrysophanol delays aging via insulin/IGF-1 signaling pathway","authors":"Hongjiao Zhang ,&nbsp;Jun Xiong ,&nbsp;Qingyao Wang ,&nbsp;Qiuyu Song ,&nbsp;Lingjie Meng ,&nbsp;Han Zhang ,&nbsp;Yuxin Bao ,&nbsp;Fang Liu ,&nbsp;Yi Xiao","doi":"10.1016/j.freeradbiomed.2025.03.011","DOIUrl":null,"url":null,"abstract":"<div><div>Aging is inevitable processes which play a significant role in the development of various diseases, including cardiovascular diseases, neurodegenerative disorders, and cancers. The extension of lifespan and the improvement of age-related diseases can potentially be achieved by targeting evolutionarily conserved pathways and mechanisms through pharmacological interventions. Chrysophanol (Chr), a naturally occurring anthraquinone compound primarily derived from rhubarb of the Polygonaceae family, exhibits a wide range of pharmacological activities, including anti-cancer, anti-inflammatory, and anti-bacterial effects. However, its role in regulating aging remains unclear. In this study, we discovered that Chr extends both lifespan and healthspan in <em>Caenorhabditis elegans</em> by activating the DAF-2/DAF-16 insulin signaling pathway. Furthermore, we observed that Chr promoted longevity in natural aging mice, doxorubicin-induced aging mice, and transgenic mice through the conserved Insulin/IGF-1 signaling pathway. Additionally, Chr also influenced senescence-associated secretory phenotypes (SASPs) and enhanced the expression of antioxidant genes, contributing to delayed aging. These findings highlight that Chr exerts anti-aging effects from <em>C. elegans</em> to mammals via the evolutionarily conserved Insulin/IGF-1 signaling pathway, positioning Chr as a promising candidate for the prevention and treatment of aging and age-related diseases.</div></div>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":"232 ","pages":"Pages 269-278"},"PeriodicalIF":7.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0891584925001613","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aging is inevitable processes which play a significant role in the development of various diseases, including cardiovascular diseases, neurodegenerative disorders, and cancers. The extension of lifespan and the improvement of age-related diseases can potentially be achieved by targeting evolutionarily conserved pathways and mechanisms through pharmacological interventions. Chrysophanol (Chr), a naturally occurring anthraquinone compound primarily derived from rhubarb of the Polygonaceae family, exhibits a wide range of pharmacological activities, including anti-cancer, anti-inflammatory, and anti-bacterial effects. However, its role in regulating aging remains unclear. In this study, we discovered that Chr extends both lifespan and healthspan in Caenorhabditis elegans by activating the DAF-2/DAF-16 insulin signaling pathway. Furthermore, we observed that Chr promoted longevity in natural aging mice, doxorubicin-induced aging mice, and transgenic mice through the conserved Insulin/IGF-1 signaling pathway. Additionally, Chr also influenced senescence-associated secretory phenotypes (SASPs) and enhanced the expression of antioxidant genes, contributing to delayed aging. These findings highlight that Chr exerts anti-aging effects from C. elegans to mammals via the evolutionarily conserved Insulin/IGF-1 signaling pathway, positioning Chr as a promising candidate for the prevention and treatment of aging and age-related diseases.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Free Radical Biology and Medicine
Free Radical Biology and Medicine 医学-内分泌学与代谢
CiteScore
14.00
自引率
4.10%
发文量
850
审稿时长
22 days
期刊介绍: Free Radical Biology and Medicine is a leading journal in the field of redox biology, which is the study of the role of reactive oxygen species (ROS) and other oxidizing agents in biological systems. The journal serves as a premier forum for publishing innovative and groundbreaking research that explores the redox biology of health and disease, covering a wide range of topics and disciplines. Free Radical Biology and Medicine also commissions Special Issues that highlight recent advances in both basic and clinical research, with a particular emphasis on the mechanisms underlying altered metabolism and redox signaling. These Special Issues aim to provide a focused platform for the latest research in the field, fostering collaboration and knowledge exchange among researchers and clinicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信