Bifurcations and collective states of Kuramoto oscillators with higher-order interactions and rotational symmetry breaking.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-03-01 DOI:10.1063/5.0239017
Antonio Mihara, Célia M Kuwana, Roberto C Budzinski, Lyle E Muller, Rene O Medrano-T
{"title":"Bifurcations and collective states of Kuramoto oscillators with higher-order interactions and rotational symmetry breaking.","authors":"Antonio Mihara, Célia M Kuwana, Roberto C Budzinski, Lyle E Muller, Rene O Medrano-T","doi":"10.1063/5.0239017","DOIUrl":null,"url":null,"abstract":"<p><p>We study a network of identical Kuramoto oscillators with higher-order interactions that also break the rotational symmetry of the system. To gain analytical insights into this model, we use the Watanabe-Strogatz Ansatz, which allows us to reduce the dimensionality of the original system of equations. The study of stability and bifurcations of the reduced system reveals a codimension two Bogdanov-Takens bifurcation and several other associated bifurcations. Such analysis is corroborated by numerical simulations of the associated Kuramoto system, which, in turn, unveils a variety of collective behaviors such as synchronized motion, oscillation death, chimeras, incoherent states, and traveling waves. Importantly, this system displays a case where alternating chimeras emerge in an indistinguishable single population of oscillators, which may offer insights into the unihemispheric slow-wave sleep phenomenon observed in mammals and birds.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0239017","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We study a network of identical Kuramoto oscillators with higher-order interactions that also break the rotational symmetry of the system. To gain analytical insights into this model, we use the Watanabe-Strogatz Ansatz, which allows us to reduce the dimensionality of the original system of equations. The study of stability and bifurcations of the reduced system reveals a codimension two Bogdanov-Takens bifurcation and several other associated bifurcations. Such analysis is corroborated by numerical simulations of the associated Kuramoto system, which, in turn, unveils a variety of collective behaviors such as synchronized motion, oscillation death, chimeras, incoherent states, and traveling waves. Importantly, this system displays a case where alternating chimeras emerge in an indistinguishable single population of oscillators, which may offer insights into the unihemispheric slow-wave sleep phenomenon observed in mammals and birds.

我们研究了一个具有高阶相互作用的相同仓本振荡器网络,这种相互作用也打破了系统的旋转对称性。为了获得对该模型的分析见解,我们使用了 Watanabe-Strogatz Ansatz,它允许我们降低原始方程系统的维数。通过对简化系统的稳定性和分岔的研究,我们发现了一个标度为 2 的波格丹诺夫-塔肯斯分岔和其他几个相关的分岔。对相关仓本系统的数值模拟证实了上述分析,进而揭示了各种集体行为,如同步运动、振荡死亡、嵌合体、不连贯状态和行波。重要的是,该系统显示了在一个无法区分的单一振荡器群体中出现交替嵌合体的情况,这可能为在哺乳动物和鸟类中观察到的单半球慢波睡眠现象提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信