Antonio Mihara, Célia M Kuwana, Roberto C Budzinski, Lyle E Muller, Rene O Medrano-T
{"title":"Bifurcations and collective states of Kuramoto oscillators with higher-order interactions and rotational symmetry breaking.","authors":"Antonio Mihara, Célia M Kuwana, Roberto C Budzinski, Lyle E Muller, Rene O Medrano-T","doi":"10.1063/5.0239017","DOIUrl":null,"url":null,"abstract":"<p><p>We study a network of identical Kuramoto oscillators with higher-order interactions that also break the rotational symmetry of the system. To gain analytical insights into this model, we use the Watanabe-Strogatz Ansatz, which allows us to reduce the dimensionality of the original system of equations. The study of stability and bifurcations of the reduced system reveals a codimension two Bogdanov-Takens bifurcation and several other associated bifurcations. Such analysis is corroborated by numerical simulations of the associated Kuramoto system, which, in turn, unveils a variety of collective behaviors such as synchronized motion, oscillation death, chimeras, incoherent states, and traveling waves. Importantly, this system displays a case where alternating chimeras emerge in an indistinguishable single population of oscillators, which may offer insights into the unihemispheric slow-wave sleep phenomenon observed in mammals and birds.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0239017","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We study a network of identical Kuramoto oscillators with higher-order interactions that also break the rotational symmetry of the system. To gain analytical insights into this model, we use the Watanabe-Strogatz Ansatz, which allows us to reduce the dimensionality of the original system of equations. The study of stability and bifurcations of the reduced system reveals a codimension two Bogdanov-Takens bifurcation and several other associated bifurcations. Such analysis is corroborated by numerical simulations of the associated Kuramoto system, which, in turn, unveils a variety of collective behaviors such as synchronized motion, oscillation death, chimeras, incoherent states, and traveling waves. Importantly, this system displays a case where alternating chimeras emerge in an indistinguishable single population of oscillators, which may offer insights into the unihemispheric slow-wave sleep phenomenon observed in mammals and birds.
期刊介绍:
Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.