A minimal model for multigroup adaptive SIS epidemics.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-03-01 DOI:10.1063/5.0246228
Massimo A Achterberg, Mattia Sensi, Sara Sottile
{"title":"A minimal model for multigroup adaptive SIS epidemics.","authors":"Massimo A Achterberg, Mattia Sensi, Sara Sottile","doi":"10.1063/5.0246228","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a generalization of the adaptive N-Intertwined Mean-Field Approximation (aNIMFA) model studied in Achterberg and Sensi [Nonlinear Dyn. 111, 12657-12670 (2023)] to a heterogeneous network of communities. In particular, the multigroup aNIMFA model describes the impact of both local and global disease awareness on the spread of a disease in a network. We obtain results on the existence and stability of the equilibria of the system, in terms of the basic reproduction number R0. Assuming individuals have no reason to decrease their contacts in the absence of disease, we show that the basic reproduction number R0 is equivalent to the basic reproduction number of the NIMFA model on static networks. Based on numerical simulations, we demonstrate that with just two communities periodic behavior can occur, which contrasts the case with only a single community, in which periodicity was ruled out analytically. We also find that breaking connections between communities is more fruitful compared to breaking connections within communities to reduce the disease outbreak on dense networks, but both strategies are viable in networks with fewer links. Finally, we emphasize that our method of modeling adaptivity is not limited to Susceptible-Infected-Susceptible models, but has huge potential to be applied in other compartmental models in epidemiology.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0246228","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a generalization of the adaptive N-Intertwined Mean-Field Approximation (aNIMFA) model studied in Achterberg and Sensi [Nonlinear Dyn. 111, 12657-12670 (2023)] to a heterogeneous network of communities. In particular, the multigroup aNIMFA model describes the impact of both local and global disease awareness on the spread of a disease in a network. We obtain results on the existence and stability of the equilibria of the system, in terms of the basic reproduction number R0. Assuming individuals have no reason to decrease their contacts in the absence of disease, we show that the basic reproduction number R0 is equivalent to the basic reproduction number of the NIMFA model on static networks. Based on numerical simulations, we demonstrate that with just two communities periodic behavior can occur, which contrasts the case with only a single community, in which periodicity was ruled out analytically. We also find that breaking connections between communities is more fruitful compared to breaking connections within communities to reduce the disease outbreak on dense networks, but both strategies are viable in networks with fewer links. Finally, we emphasize that our method of modeling adaptivity is not limited to Susceptible-Infected-Susceptible models, but has huge potential to be applied in other compartmental models in epidemiology.

多群体适应性 SIS 流行病的最小模型。
我们将Achterberg和Sensi[非线性动力学,111,12657-12670(2023)]研究的自适应n-交织平均场近似(aNIMFA)模型推广到异质社区网络。特别是,多组aNIMFA模型描述了本地和全球疾病意识对网络中疾病传播的影响。用基本再生数R0给出了系统平衡点的存在性和稳定性。假设个体在没有疾病的情况下没有理由减少他们的接触,我们证明了基本繁殖数R0等同于静态网络上NIMFA模型的基本繁殖数。在数值模拟的基础上,我们证明了在只有两个群落的情况下,周期性行为可以发生,这与只有一个群落的情况形成了对比,在这种情况下,周期性在分析上被排除了。我们还发现,在密集的网络中,打破社区之间的联系比打破社区内部的联系更有效,但这两种策略在链接较少的网络中都是可行的。最后,我们强调,我们的建模适应性方法不仅限于易感-感染-易感模型,而且在流行病学的其他区室模型中具有巨大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信