Contrastive Learning with Transformer to Predict the Chronicity of Children with Immune Thrombocytopenia.

IF 6.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yuntian Wang, Yongqiang Tang, Jingyao Ma, Zhenping Chen, Chang Cui, Mingda Li, Runhui Wu, Wensheng Zhang
{"title":"Contrastive Learning with Transformer to Predict the Chronicity of Children with Immune Thrombocytopenia.","authors":"Yuntian Wang, Yongqiang Tang, Jingyao Ma, Zhenping Chen, Chang Cui, Mingda Li, Runhui Wu, Wensheng Zhang","doi":"10.1109/JBHI.2025.3551365","DOIUrl":null,"url":null,"abstract":"<p><p>Immune thrombocytopenia (ITP) is a typically self-limiting and immune-mediated bleeding disorder in children. Approximately 20% of children with ITP experience chronicity, leading to reduced quality of life and increased treatment burden. The accurate prediction of chronicity would enable clinicians to make personalized treatment plans at an early stage. However, due to the self-limiting nature of ITP and the scarcity of available children patients, the data presents two prominent issues: small data and imbalanced class, which are unfavorable for effectively training a deep learning model. To handle these issues concurrently, we proposed a novel method that integrates contrastive learning with the Transformer. First, we adopt the FT-Transformer as our backbone, which allows our model to flexibly process heterogeneous tabular data. Second, we amplify and balance the original data via random masking and oversampling, respectively. Lastly, we build contrastive pairs according to the latent representations generated by the FT-Transformer encoder, such that the amplified and oversampled synthetic data can be utilized thoroughly. The experimental results on real-world ITP children data show that our proposal outperforms the state-of-the-art methods, and demonstrate the significant advantages of dealing with insufficient and imbalanced problems.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2025.3551365","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Immune thrombocytopenia (ITP) is a typically self-limiting and immune-mediated bleeding disorder in children. Approximately 20% of children with ITP experience chronicity, leading to reduced quality of life and increased treatment burden. The accurate prediction of chronicity would enable clinicians to make personalized treatment plans at an early stage. However, due to the self-limiting nature of ITP and the scarcity of available children patients, the data presents two prominent issues: small data and imbalanced class, which are unfavorable for effectively training a deep learning model. To handle these issues concurrently, we proposed a novel method that integrates contrastive learning with the Transformer. First, we adopt the FT-Transformer as our backbone, which allows our model to flexibly process heterogeneous tabular data. Second, we amplify and balance the original data via random masking and oversampling, respectively. Lastly, we build contrastive pairs according to the latent representations generated by the FT-Transformer encoder, such that the amplified and oversampled synthetic data can be utilized thoroughly. The experimental results on real-world ITP children data show that our proposal outperforms the state-of-the-art methods, and demonstrate the significant advantages of dealing with insufficient and imbalanced problems.

求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Journal of Biomedical and Health Informatics
IEEE Journal of Biomedical and Health Informatics COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
13.60
自引率
6.50%
发文量
1151
期刊介绍: IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信