Analyzing unsteady flow of shear-thinning nanofluids over a cylinder with exponential stretching and shrinking: An artificial neural network approach

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Saeed Ehsan Awan , Fazal Badshah , Muhammad Awais , Nabeela Parveen , Zulqurnain Sabir , Zuhaib Ashfaq Khan
{"title":"Analyzing unsteady flow of shear-thinning nanofluids over a cylinder with exponential stretching and shrinking: An artificial neural network approach","authors":"Saeed Ehsan Awan ,&nbsp;Fazal Badshah ,&nbsp;Muhammad Awais ,&nbsp;Nabeela Parveen ,&nbsp;Zulqurnain Sabir ,&nbsp;Zuhaib Ashfaq Khan","doi":"10.1016/j.chaos.2025.116301","DOIUrl":null,"url":null,"abstract":"<div><div>Current study aims to implement a novel intelligent numerical computing framework by applying a computational artificial neural network designated with Bayesian regularization network (BRN) to underscore a comparative analysis for the impact of unsteady shear-thinning behavior of the flow of nanofluid through an exponentially stretching or shrinking cylinder. Transformed governing model of ordinary differential equations in cylindrical coordinates based on Buongiorno model is analyzed. The reference dataset for Buongiorno model is obtained by using Adam numerical solver against six scenarios with the variation of parameters namely, stretching/shrinking parameter, Weissenberg number, Reynold number, Brownian motion parameter, Prandtl number, and Lewis number. The acquired datasets are feed into a supervised computational framework utilizing BRN to approximate solutions for the unsteady shear-thinning behavior of flow system. The robustness of the stochastic process based on the BRN is validated through extensive simulation including convergence plots using the mean square errors, the performance of adaptive control parameters in the optimization algorithm, error distribution histograms and regression analysis. The optimal validation performance is observed in relation to epoch number index at epoch 621, 239, 548, 427, 580, 826 and 717 respective to all the scenarios. Further, observed mean squared errors (MSE) between target and output data of approximately 1.1383 × 10<sup>−11</sup>, 4.4409 × 10<sup>−11</sup>, 4.3824 × 10<sup>−12</sup>, 3.7145 × 10<sup>−12</sup>, 3.4385 × 10<sup>−13</sup>, 1.0341 × 10<sup>−11</sup>and 3.1188 × 10<sup>−11</sup>, recorded at times of 2 s, 1 s, 2 s, 2 s, 3 s, and 2 s respectively. These quantitative measures demonstrate minimal error margin which ensure the reliable alignment with numerical data.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"195 ","pages":"Article 116301"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925003145","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Current study aims to implement a novel intelligent numerical computing framework by applying a computational artificial neural network designated with Bayesian regularization network (BRN) to underscore a comparative analysis for the impact of unsteady shear-thinning behavior of the flow of nanofluid through an exponentially stretching or shrinking cylinder. Transformed governing model of ordinary differential equations in cylindrical coordinates based on Buongiorno model is analyzed. The reference dataset for Buongiorno model is obtained by using Adam numerical solver against six scenarios with the variation of parameters namely, stretching/shrinking parameter, Weissenberg number, Reynold number, Brownian motion parameter, Prandtl number, and Lewis number. The acquired datasets are feed into a supervised computational framework utilizing BRN to approximate solutions for the unsteady shear-thinning behavior of flow system. The robustness of the stochastic process based on the BRN is validated through extensive simulation including convergence plots using the mean square errors, the performance of adaptive control parameters in the optimization algorithm, error distribution histograms and regression analysis. The optimal validation performance is observed in relation to epoch number index at epoch 621, 239, 548, 427, 580, 826 and 717 respective to all the scenarios. Further, observed mean squared errors (MSE) between target and output data of approximately 1.1383 × 10−11, 4.4409 × 10−11, 4.3824 × 10−12, 3.7145 × 10−12, 3.4385 × 10−13, 1.0341 × 10−11and 3.1188 × 10−11, recorded at times of 2 s, 1 s, 2 s, 2 s, 3 s, and 2 s respectively. These quantitative measures demonstrate minimal error margin which ensure the reliable alignment with numerical data.
分析剪切稀化纳米流体在具有指数拉伸和收缩的圆柱体上的非稳态流动:人工神经网络方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信