Backstepping control for stochastic strict-feedback systems with Lévy noise

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
K. Mathiyalagan, T. Elizabeth Jeyanthi
{"title":"Backstepping control for stochastic strict-feedback systems with Lévy noise","authors":"K. Mathiyalagan,&nbsp;T. Elizabeth Jeyanthi","doi":"10.1016/j.chaos.2025.116241","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a class of nonlinear strict-feedback continuous time stochastic jump diffusion system (SJDS) driven by Lévy noise is considered. The aim of this work is to design control function for the system to obtain global asymptotic stability at the origin in probability. Backstepping method is used to design the robust stabilizing control function. Also, quartic form Lyapunov functional is utilized to stabilize the system with high amplified energy. Fourth-moment exponential stability conditions for the closed loop system are derived using It<span><math><mover><mrow><mi>o</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>’s differential. Further, numerical examples are presented to show the applications of the theoretical results to physical systems. The effectiveness of the designed control function in the process of convergence of error vector are depicted in the form of error covariance matrices in the simulation.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"195 ","pages":"Article 116241"},"PeriodicalIF":5.6000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925002541","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a class of nonlinear strict-feedback continuous time stochastic jump diffusion system (SJDS) driven by Lévy noise is considered. The aim of this work is to design control function for the system to obtain global asymptotic stability at the origin in probability. Backstepping method is used to design the robust stabilizing control function. Also, quartic form Lyapunov functional is utilized to stabilize the system with high amplified energy. Fourth-moment exponential stability conditions for the closed loop system are derived using Itoˆ’s differential. Further, numerical examples are presented to show the applications of the theoretical results to physical systems. The effectiveness of the designed control function in the process of convergence of error vector are depicted in the form of error covariance matrices in the simulation.
具有lsamvy噪声的随机严格反馈系统的反演控制
研究了一类由lsamvy噪声驱动的非线性严格反馈连续时间随机跳变扩散系统(SJDS)。本工作的目的是设计控制函数,使系统在概率原点处获得全局渐近稳定。采用反步法设计鲁棒稳定控制函数。利用四次型Lyapunov泛函实现系统的高放大能量稳定。利用伊托微分导出了闭环系统的四矩指数稳定性条件。最后,通过数值算例说明了理论结果在物理系统中的应用。仿真中以误差协方差矩阵的形式描述了所设计的控制函数在误差矢量收敛过程中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信