A. A. Kaleeva, B. A. Timerkaev, O. A. Petrova, A. A. Saifutdinova
{"title":"Spatial Characteristics of Arc Discharge Plasma in Relation to the Synthesis of Silicon Nanostructures","authors":"A. A. Kaleeva, B. A. Timerkaev, O. A. Petrova, A. A. Saifutdinova","doi":"10.1134/S1063784224701081","DOIUrl":null,"url":null,"abstract":"<p>The paper presents an arc discharge model as applied to the synthesis problems of semiconductor nanostructures. The model is based on a completely nonequilibrium approximation and includes charged particle density balance equations, electron energy balance and energy balance equation for the heavy component of plasma, and Poisson’s equations for describing a self-consistent electric field. As a result of a numerical study of the system of equations describing an electric arc discharge, spatial distributions of the main characteristics of an arc discharge, such as the potential and intensity of the electric field, densities of electrons and ions, and gas temperatures were obtained.</p>","PeriodicalId":783,"journal":{"name":"Technical Physics","volume":"69 11","pages":"2626 - 2631"},"PeriodicalIF":1.1000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063784224701081","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The paper presents an arc discharge model as applied to the synthesis problems of semiconductor nanostructures. The model is based on a completely nonequilibrium approximation and includes charged particle density balance equations, electron energy balance and energy balance equation for the heavy component of plasma, and Poisson’s equations for describing a self-consistent electric field. As a result of a numerical study of the system of equations describing an electric arc discharge, spatial distributions of the main characteristics of an arc discharge, such as the potential and intensity of the electric field, densities of electrons and ions, and gas temperatures were obtained.
期刊介绍:
Technical Physics is a journal that contains practical information on all aspects of applied physics, especially instrumentation and measurement techniques. Particular emphasis is put on plasma physics and related fields such as studies of charged particles in electromagnetic fields, synchrotron radiation, electron and ion beams, gas lasers and discharges. Other journal topics are the properties of condensed matter, including semiconductors, superconductors, gases, liquids, and different materials.