Well-posedness for stochastic fractional navier-stokes equation in critical Fourier-Besov-Morrey spaces

Q2 Mathematics
Fatima Ouidirne, Achraf Azanzal, Mohamed Oukessou
{"title":"Well-posedness for stochastic fractional navier-stokes equation in critical Fourier-Besov-Morrey spaces","authors":"Fatima Ouidirne,&nbsp;Achraf Azanzal,&nbsp;Mohamed Oukessou","doi":"10.1007/s11565-025-00584-2","DOIUrl":null,"url":null,"abstract":"<div><p>This work considers the 3-D stochastic fractional Navier-Stokes equation driven by multiplicative noise in critical Fourier-Besov-Morrey spaces <span>\\(\\mathcal {F\\dot{N}}_{p,h,r}^{1-2\\beta +\\frac{3}{p^{\\prime }}+\\frac{h}{p}}(\\mathbb {R}^{3})\\)</span>. We establish the local existence and uniqueness of the solutions to the concerned equation and we prove the global existence in the probabilistic sense when the initial data are small.\n</p></div>","PeriodicalId":35009,"journal":{"name":"Annali dell''Universita di Ferrara","volume":"71 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali dell''Universita di Ferrara","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11565-025-00584-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

This work considers the 3-D stochastic fractional Navier-Stokes equation driven by multiplicative noise in critical Fourier-Besov-Morrey spaces \(\mathcal {F\dot{N}}_{p,h,r}^{1-2\beta +\frac{3}{p^{\prime }}+\frac{h}{p}}(\mathbb {R}^{3})\). We establish the local existence and uniqueness of the solutions to the concerned equation and we prove the global existence in the probabilistic sense when the initial data are small.

临界Fourier-Besov-Morrey空间中随机分数阶navier-stokes方程的适定性
本文研究了临界Fourier-Besov-Morrey空间中由乘性噪声驱动的三维随机分数阶Navier-Stokes方程\(\mathcal {F\dot{N}}_{p,h,r}^{1-2\beta +\frac{3}{p^{\prime }}+\frac{h}{p}}(\mathbb {R}^{3})\)。建立了该方程解的局部存在唯一性,并在概率意义上证明了初始数据较小时方程解的全局存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annali dell''Universita di Ferrara
Annali dell''Universita di Ferrara Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
71
期刊介绍: Annali dell''Università di Ferrara is a general mathematical journal publishing high quality papers in all aspects of pure and applied mathematics. After a quick preliminary examination, potentially acceptable contributions will be judged by appropriate international referees. Original research papers are preferred, but well-written surveys on important subjects are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信