Learning-Based Distributed Spatio-Temporal $k$k Nearest Neighbors Join

IF 7.5 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Ruiyuan Li;Jiajun Li;Minxin Zhou;Rubin Wang;Huajun He;Chao Chen;Jie Bao;Yu Zheng
{"title":"Learning-Based Distributed Spatio-Temporal $k$k Nearest Neighbors Join","authors":"Ruiyuan Li;Jiajun Li;Minxin Zhou;Rubin Wang;Huajun He;Chao Chen;Jie Bao;Yu Zheng","doi":"10.1109/TBDATA.2024.3442539","DOIUrl":null,"url":null,"abstract":"The rapid development of positioning technology produces an extremely large volume of spatio-temporal data with various geometry types such as point, line string, polygon, or a mixed combination of them. As one of the most fundamental but time-consuming operations, <inline-formula><tex-math>$k$</tex-math></inline-formula> nearest neighbors join (<inline-formula><tex-math>$k$</tex-math></inline-formula>NN join) has attracted much attention. However, most existing works for <inline-formula><tex-math>$k$</tex-math></inline-formula>NN join either ignore temporal information or consider only point data. Besides, most of them do not automatically adapt to the different features of spatio-temporal data. This paper proposes to address a novel and useful problem, i.e., ST-<inline-formula><tex-math>$k$</tex-math></inline-formula>NN join, which considers both <i>spatial closeness</i> and <i>temporal concurrency</i>. To support ST-<inline-formula><tex-math>$k$</tex-math></inline-formula>NN join over a large amount of spatio-temporal data with any geometry types efficiently, we propose a novel distributed solution based on Apache Spark. Specifically, our method adopts a two-round join framework. In the first round join, we propose a new spatio-temporal partitioning method that achieves spatio-temporal locality and load balance at the same time. We also propose a lightweight index structure, i.e., Time Range Count Index (TRC-index), to enable efficient ST-<inline-formula><tex-math>$k$</tex-math></inline-formula>NN join. In the second round join, to reduce the data transmission among different machines, we remove duplicates based on spatio-temporal reference points before shuffling local results. Furthermore, we design a set of models based on Bayesian optimization to automatically determine the values for the introduced parameters. Extensive experiments are conducted using three real big datasets, showing that our method is much more scalable and achieves 9X faster than baselines, and that the proposed models can always predict appropriate parameters for different datasets.","PeriodicalId":13106,"journal":{"name":"IEEE Transactions on Big Data","volume":"11 2","pages":"861-878"},"PeriodicalIF":7.5000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Big Data","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10634797/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid development of positioning technology produces an extremely large volume of spatio-temporal data with various geometry types such as point, line string, polygon, or a mixed combination of them. As one of the most fundamental but time-consuming operations, $k$ nearest neighbors join ($k$NN join) has attracted much attention. However, most existing works for $k$NN join either ignore temporal information or consider only point data. Besides, most of them do not automatically adapt to the different features of spatio-temporal data. This paper proposes to address a novel and useful problem, i.e., ST-$k$NN join, which considers both spatial closeness and temporal concurrency. To support ST-$k$NN join over a large amount of spatio-temporal data with any geometry types efficiently, we propose a novel distributed solution based on Apache Spark. Specifically, our method adopts a two-round join framework. In the first round join, we propose a new spatio-temporal partitioning method that achieves spatio-temporal locality and load balance at the same time. We also propose a lightweight index structure, i.e., Time Range Count Index (TRC-index), to enable efficient ST-$k$NN join. In the second round join, to reduce the data transmission among different machines, we remove duplicates based on spatio-temporal reference points before shuffling local results. Furthermore, we design a set of models based on Bayesian optimization to automatically determine the values for the introduced parameters. Extensive experiments are conducted using three real big datasets, showing that our method is much more scalable and achieves 9X faster than baselines, and that the proposed models can always predict appropriate parameters for different datasets.
基于学习的分布式时空$k$k近邻连接
随着定位技术的飞速发展,产生了海量的点、线、串、多边形或其混合组合等多种几何类型的时空数据。$k$近邻连接($k$NN join)作为一种最基本但也最耗时的操作,引起了人们的广泛关注。然而,大多数现有的$k$NN连接工作要么忽略时间信息,要么只考虑点数据。此外,它们大多不能自动适应时空数据的不同特征。本文提出了一个新颖而有用的问题,即ST-$k$NN连接,它同时考虑了空间紧密性和时间并发性。为了有效地支持任意几何类型的海量时空数据的ST-$k$NN连接,我们提出了一种基于Apache Spark的分布式解决方案。具体来说,我们的方法采用了一个两轮连接框架。在第一轮连接中,我们提出了一种新的时空分区方法,同时实现了时空局部性和负载均衡性。我们还提出了一个轻量级的索引结构,即时间范围计数索引(TRC-index),以实现有效的ST-$k$NN连接。在第二轮join中,为了减少不同机器之间的数据传输,我们在对局部结果进行变换之前,基于时空参考点去除重复项。此外,我们设计了一组基于贝叶斯优化的模型来自动确定引入参数的值。使用三个真实的大数据集进行了大量的实验,结果表明我们的方法具有更高的可扩展性,比基线速度快9倍,并且所提出的模型总是可以预测不同数据集的适当参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.80
自引率
2.80%
发文量
114
期刊介绍: The IEEE Transactions on Big Data publishes peer-reviewed articles focusing on big data. These articles present innovative research ideas and application results across disciplines, including novel theories, algorithms, and applications. Research areas cover a wide range, such as big data analytics, visualization, curation, management, semantics, infrastructure, standards, performance analysis, intelligence extraction, scientific discovery, security, privacy, and legal issues specific to big data. The journal also prioritizes applications of big data in fields generating massive datasets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信