Local High-Order Graph Learning for Multi-View Clustering

IF 7.5 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Zhi Wang;Qiang Lin;Yaxiong Ma;Xiaoke Ma
{"title":"Local High-Order Graph Learning for Multi-View Clustering","authors":"Zhi Wang;Qiang Lin;Yaxiong Ma;Xiaoke Ma","doi":"10.1109/TBDATA.2024.3433525","DOIUrl":null,"url":null,"abstract":"As the accumulation of multi-view data continues to grow, multi-view clustering has become increasingly important in research fields like data mining. However, current methods have been criticized for their unsatisfactory performance, such as insufficient exploration of intra-view high-order relationships and poor characterization of inter-view diverse features. To overcome these challenges, we propose a novel approach called Local High-order Graph Learning for Multi-View Clustering (LHGL_MVC). Our method aims to explore high-order relationships within a view while also considering diverse information between views. In LHGL_MVC, we learn the initial graphs of each view through self-representation, which are decomposed into consistent and diverse parts to better capture the diversity of different views. Based on consistent parts, we propose a novel local high-order graph learning approach to more effectively explore high-order relationships between samples within each view. At the same time, we leverage high-order relationships between views using the rotated tensor nuclear norm. Finally, we obtain a unified graph for clustering by fusing all consistent affinity graphs and their high-order graphs with adaptive weights. All procedures are integrated into an overall objective function, which mutually promotes during the optimization process. The comprehensive experiments conducted on eleven real-world datasets demonstrate that LHGL_MVC significantly outperforms existing algorithms in various measurements, highlighting the superiority of the proposed method.","PeriodicalId":13106,"journal":{"name":"IEEE Transactions on Big Data","volume":"11 2","pages":"761-773"},"PeriodicalIF":7.5000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Big Data","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10609558/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

As the accumulation of multi-view data continues to grow, multi-view clustering has become increasingly important in research fields like data mining. However, current methods have been criticized for their unsatisfactory performance, such as insufficient exploration of intra-view high-order relationships and poor characterization of inter-view diverse features. To overcome these challenges, we propose a novel approach called Local High-order Graph Learning for Multi-View Clustering (LHGL_MVC). Our method aims to explore high-order relationships within a view while also considering diverse information between views. In LHGL_MVC, we learn the initial graphs of each view through self-representation, which are decomposed into consistent and diverse parts to better capture the diversity of different views. Based on consistent parts, we propose a novel local high-order graph learning approach to more effectively explore high-order relationships between samples within each view. At the same time, we leverage high-order relationships between views using the rotated tensor nuclear norm. Finally, we obtain a unified graph for clustering by fusing all consistent affinity graphs and their high-order graphs with adaptive weights. All procedures are integrated into an overall objective function, which mutually promotes during the optimization process. The comprehensive experiments conducted on eleven real-world datasets demonstrate that LHGL_MVC significantly outperforms existing algorithms in various measurements, highlighting the superiority of the proposed method.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.80
自引率
2.80%
发文量
114
期刊介绍: The IEEE Transactions on Big Data publishes peer-reviewed articles focusing on big data. These articles present innovative research ideas and application results across disciplines, including novel theories, algorithms, and applications. Research areas cover a wide range, such as big data analytics, visualization, curation, management, semantics, infrastructure, standards, performance analysis, intelligence extraction, scientific discovery, security, privacy, and legal issues specific to big data. The journal also prioritizes applications of big data in fields generating massive datasets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信