Minerva: Decentralized Collaborative Query Processing Over InterPlanetary File System

IF 7.5 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Zhiyi Yao;Bowen Ding;Qianlan Bai;Yuedong Xu
{"title":"Minerva: Decentralized Collaborative Query Processing Over InterPlanetary File System","authors":"Zhiyi Yao;Bowen Ding;Qianlan Bai;Yuedong Xu","doi":"10.1109/TBDATA.2024.3423729","DOIUrl":null,"url":null,"abstract":"Data silos create barriers to accessing and utilizing data dispersed over networks. Directly sharing data easily suffers from the long downloading time, the single point failure and the untraceable data usage. In this paper, we present Minerva, a peer-to-peer cross-cluster data query system based on the InterPlanetary File System (IPFS). Minerva makes use of the distributed Hash table (DHT) lookup to pinpoint the locations that store content chunks. We theoretically model the DHT query delay and introduce a fat Merkle tree structure as well as the DHT caching to reduce it. We design the query plan for read and write operations on top of Apache Drill that enables the collaborative query with decentralized workers. We conduct comprehensive experiments on Minerva, and the results show that Minerva achieves up to <inline-formula><tex-math>$2.08 \\times$</tex-math></inline-formula> query performance acceleration compared to the original IPFS data query, and can complete data analysis queries on the Internet-like environments within an average latency of 0.615 second. With a collaborative query, Minerva could perform up to <inline-formula><tex-math>$1.39 \\times$</tex-math></inline-formula> performance acceleration than the centralized query with raw data shipment.","PeriodicalId":13106,"journal":{"name":"IEEE Transactions on Big Data","volume":"11 2","pages":"669-683"},"PeriodicalIF":7.5000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Big Data","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10587115/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Data silos create barriers to accessing and utilizing data dispersed over networks. Directly sharing data easily suffers from the long downloading time, the single point failure and the untraceable data usage. In this paper, we present Minerva, a peer-to-peer cross-cluster data query system based on the InterPlanetary File System (IPFS). Minerva makes use of the distributed Hash table (DHT) lookup to pinpoint the locations that store content chunks. We theoretically model the DHT query delay and introduce a fat Merkle tree structure as well as the DHT caching to reduce it. We design the query plan for read and write operations on top of Apache Drill that enables the collaborative query with decentralized workers. We conduct comprehensive experiments on Minerva, and the results show that Minerva achieves up to $2.08 \times$ query performance acceleration compared to the original IPFS data query, and can complete data analysis queries on the Internet-like environments within an average latency of 0.615 second. With a collaborative query, Minerva could perform up to $1.39 \times$ performance acceleration than the centralized query with raw data shipment.
Minerva:星际文件系统上分散的协同查询处理
数据孤岛为访问和利用分散在网络上的数据创造了障碍。直接共享数据容易存在下载时间长、单点故障和数据使用不可追踪等问题。在本文中,我们提出了一个基于星际文件系统(IPFS)的点对点跨集群数据查询系统Minerva。Minerva使用分布式哈希表(DHT)查找来精确定位存储内容块的位置。我们从理论上对DHT查询延迟进行建模,并引入了一个胖的Merkle树结构以及DHT缓存来减少它。我们在Apache Drill之上设计了读写操作的查询计划,实现了分散工作人员的协同查询。我们在Minerva上进行了全面的实验,结果表明,Minerva与原始的IPFS数据查询相比,实现了高达2.08倍的查询性能加速,并且可以在0.615秒的平均延迟内完成类似互联网环境下的数据分析查询。通过协作查询,Minerva可以比具有原始数据传输的集中式查询执行高达1.39倍的性能加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.80
自引率
2.80%
发文量
114
期刊介绍: The IEEE Transactions on Big Data publishes peer-reviewed articles focusing on big data. These articles present innovative research ideas and application results across disciplines, including novel theories, algorithms, and applications. Research areas cover a wide range, such as big data analytics, visualization, curation, management, semantics, infrastructure, standards, performance analysis, intelligence extraction, scientific discovery, security, privacy, and legal issues specific to big data. The journal also prioritizes applications of big data in fields generating massive datasets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信