Efficient Learning for Billion-Scale Heterogeneous Information Networks

IF 7.5 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Ruize Shi;Hong Huang;Xue Lin;Kehan Yin;Wei Zhou;Hai Jin
{"title":"Efficient Learning for Billion-Scale Heterogeneous Information Networks","authors":"Ruize Shi;Hong Huang;Xue Lin;Kehan Yin;Wei Zhou;Hai Jin","doi":"10.1109/TBDATA.2024.3428331","DOIUrl":null,"url":null,"abstract":"<i>Heterogeneous graph neural networks (HGNNs)</i> excel at understanding <i>heterogeneous information networks</i> (HINs) and have demonstrated state-of-the-art performance across numerous tasks. However, previous works tend to study small datasets, which deviate significantly from real-world scenarios. More specifically, their heterogeneous message passing results in substantial memory and time overheads, as it requires aggregating heterogeneous neighbor features multiple times. To address this, we propose an <i>Efficient Heterogeneous Graph Neural Network</i> (EHGNN) that leverages <i>heterogeneous personalized PageRank</i> (HPPR) to preserve the influence between all nodes, then approximates message passing and selectively loads neighbor information for one aggregation, significantly reducing memory and time usage. In addition, we employ some lightweight techniques to ensure the performance of EHGNN. Evaluations on various HIN benchmarks in node classification and link prediction tasks unequivocally establish the superiority of EHGNN, surpassing the State-of-the-Art by 11<inline-formula><tex-math>$\\%$</tex-math></inline-formula> in terms of performance. In addition, EHGNN achieves a remarkable 400<inline-formula><tex-math>$\\%$</tex-math></inline-formula> boost in training and inference speed while utilizing less memory. Notably, EHGNN can handle a 200-million-node, 1-billion-link HIN within 18 hours on a single machine, using only 170 GB of memory, which is much lower than the previous minimum requirement of 600 GB.","PeriodicalId":13106,"journal":{"name":"IEEE Transactions on Big Data","volume":"11 2","pages":"748-760"},"PeriodicalIF":7.5000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10598347","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Big Data","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10598347/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Heterogeneous graph neural networks (HGNNs) excel at understanding heterogeneous information networks (HINs) and have demonstrated state-of-the-art performance across numerous tasks. However, previous works tend to study small datasets, which deviate significantly from real-world scenarios. More specifically, their heterogeneous message passing results in substantial memory and time overheads, as it requires aggregating heterogeneous neighbor features multiple times. To address this, we propose an Efficient Heterogeneous Graph Neural Network (EHGNN) that leverages heterogeneous personalized PageRank (HPPR) to preserve the influence between all nodes, then approximates message passing and selectively loads neighbor information for one aggregation, significantly reducing memory and time usage. In addition, we employ some lightweight techniques to ensure the performance of EHGNN. Evaluations on various HIN benchmarks in node classification and link prediction tasks unequivocally establish the superiority of EHGNN, surpassing the State-of-the-Art by 11$\%$ in terms of performance. In addition, EHGNN achieves a remarkable 400$\%$ boost in training and inference speed while utilizing less memory. Notably, EHGNN can handle a 200-million-node, 1-billion-link HIN within 18 hours on a single machine, using only 170 GB of memory, which is much lower than the previous minimum requirement of 600 GB.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.80
自引率
2.80%
发文量
114
期刊介绍: The IEEE Transactions on Big Data publishes peer-reviewed articles focusing on big data. These articles present innovative research ideas and application results across disciplines, including novel theories, algorithms, and applications. Research areas cover a wide range, such as big data analytics, visualization, curation, management, semantics, infrastructure, standards, performance analysis, intelligence extraction, scientific discovery, security, privacy, and legal issues specific to big data. The journal also prioritizes applications of big data in fields generating massive datasets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信