Yihui Li;Yuanfang Guo;Junfu Wang;Shihao Nie;Liang Yang;Di Huang;Yunhong Wang
{"title":"ALD-GCN: Graph Convolutional Networks With Attribute-Level Defense","authors":"Yihui Li;Yuanfang Guo;Junfu Wang;Shihao Nie;Liang Yang;Di Huang;Yunhong Wang","doi":"10.1109/TBDATA.2024.3433553","DOIUrl":null,"url":null,"abstract":"Graph Neural Networks(GNNs), such as Graph Convolutional Network, have exhibited impressive performance on various real-world datasets. However, many researches have confirmed that deliberately designed adversarial attacks can easily confuse GNNs on the classification of target nodes (targeted attacks) or all the nodes (global attacks). According to our observations, different attributes tend to be differently treated when the graph is attacked. Unfortunately, most of the existing defense methods can only defend at the graph or node level, which ignores the diversity of different attributes within each node. To address this limitation, we propose to leverage a new property, named Attribute-level Smoothness (ALS), which is defined based on the local differences of graph. We then propose a novel defense method, named GCN with Attribute-level Defense (ALD-GCN), which utilizes the ALS property to provide attribute-level protection to each attributes. Extensive experiments on real-world graphs have demonstrated the superiority of the proposed work and the potentials of our ALS property in the attacks.","PeriodicalId":13106,"journal":{"name":"IEEE Transactions on Big Data","volume":"11 2","pages":"788-799"},"PeriodicalIF":7.5000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Big Data","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10609548/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Graph Neural Networks(GNNs), such as Graph Convolutional Network, have exhibited impressive performance on various real-world datasets. However, many researches have confirmed that deliberately designed adversarial attacks can easily confuse GNNs on the classification of target nodes (targeted attacks) or all the nodes (global attacks). According to our observations, different attributes tend to be differently treated when the graph is attacked. Unfortunately, most of the existing defense methods can only defend at the graph or node level, which ignores the diversity of different attributes within each node. To address this limitation, we propose to leverage a new property, named Attribute-level Smoothness (ALS), which is defined based on the local differences of graph. We then propose a novel defense method, named GCN with Attribute-level Defense (ALD-GCN), which utilizes the ALS property to provide attribute-level protection to each attributes. Extensive experiments on real-world graphs have demonstrated the superiority of the proposed work and the potentials of our ALS property in the attacks.
期刊介绍:
The IEEE Transactions on Big Data publishes peer-reviewed articles focusing on big data. These articles present innovative research ideas and application results across disciplines, including novel theories, algorithms, and applications. Research areas cover a wide range, such as big data analytics, visualization, curation, management, semantics, infrastructure, standards, performance analysis, intelligence extraction, scientific discovery, security, privacy, and legal issues specific to big data. The journal also prioritizes applications of big data in fields generating massive datasets.