Multi-Objective Loss Balancing for Physics-Informed Deep Learning

IF 6.9 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Rafael Bischof , Michael A. Kraus
{"title":"Multi-Objective Loss Balancing for Physics-Informed Deep Learning","authors":"Rafael Bischof ,&nbsp;Michael A. Kraus","doi":"10.1016/j.cma.2025.117914","DOIUrl":null,"url":null,"abstract":"<div><div>Physics-Informed Neural Networks (PINN) are deep learning algorithms that leverage physical laws by including partial differential equations together with a respective set of boundary and initial conditions as penalty terms in their loss function. In this work, we observe the significant role of correctly weighting the combination of multiple competitive loss functions for training PINNs effectively. To this end, we implement and evaluate different methods aiming at balancing the contributions of multiple terms of the PINN’s loss function and their gradients. After reviewing three existing loss scaling approaches (Learning Rate Annealing, GradNorm and SoftAdapt), we propose a novel self-adaptive loss balancing scheme for PINNs named <em>ReLoBRaLo</em> (Relative Loss Balancing with Random Lookback). We extensively evaluate the performance of the aforementioned balancing schemes by solving both forward as well as inverse problems on three benchmark PDEs for PINNs: Burgers’ equation, Kirchhoff’s plate bending equation, Helmholtz’s equation and over 20 PDEs from the ”PINNacle” collection. The results show that ReLoBRaLo is able to consistently outperform the baseline of existing scaling methods in terms of accuracy while also inducing significantly less computational overhead for a variety of PDE classes.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"439 ","pages":"Article 117914"},"PeriodicalIF":6.9000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782525001860","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Physics-Informed Neural Networks (PINN) are deep learning algorithms that leverage physical laws by including partial differential equations together with a respective set of boundary and initial conditions as penalty terms in their loss function. In this work, we observe the significant role of correctly weighting the combination of multiple competitive loss functions for training PINNs effectively. To this end, we implement and evaluate different methods aiming at balancing the contributions of multiple terms of the PINN’s loss function and their gradients. After reviewing three existing loss scaling approaches (Learning Rate Annealing, GradNorm and SoftAdapt), we propose a novel self-adaptive loss balancing scheme for PINNs named ReLoBRaLo (Relative Loss Balancing with Random Lookback). We extensively evaluate the performance of the aforementioned balancing schemes by solving both forward as well as inverse problems on three benchmark PDEs for PINNs: Burgers’ equation, Kirchhoff’s plate bending equation, Helmholtz’s equation and over 20 PDEs from the ”PINNacle” collection. The results show that ReLoBRaLo is able to consistently outperform the baseline of existing scaling methods in terms of accuracy while also inducing significantly less computational overhead for a variety of PDE classes.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信