Enhancing Large-Area DEM modeling of GF-7 stereo imagery: Integrating ICESat-2 data with Multi-characteristic constraint filtering and terrain matching correction

IF 7.6 Q1 REMOTE SENSING
Kai Chen , Wen Dai , Fayuan Li , Sijin Li , Chun Wang
{"title":"Enhancing Large-Area DEM modeling of GF-7 stereo imagery: Integrating ICESat-2 data with Multi-characteristic constraint filtering and terrain matching correction","authors":"Kai Chen ,&nbsp;Wen Dai ,&nbsp;Fayuan Li ,&nbsp;Sijin Li ,&nbsp;Chun Wang","doi":"10.1016/j.jag.2025.104485","DOIUrl":null,"url":null,"abstract":"<div><div>The integration of Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) data with Optical Photogrammetric Satellite Stereo Imagery (OPSSI) for Block Adjustment (BA) has emerged as a novel approach for generating large-area, high-accuracy Digital Elevation Models (DEMs). However, owing to the discrepancies between these two data platforms and the systematic errors of their sensors, errors arise in the BA fusion outcomes during the matching process of the two datasets. To tackle this issue, this paper proposes a method aimed at enhancing the accuracy of the BA process. Initially, the multi-characteristic constraint is used to filter the ICESat-2 ATL08 product to obtain control points and check points. Subsequently, the Terrain Matching Correction is applied to control points, and then integrated with the GF-7 OPSSI for BA to generate DEM. Ultimately, the check points are employed to assess the accuracy of the established DEM. Experiments in a 2,000 km<sup>2</sup> test area in the Wuding River Basin show that: (1) The inclusion of ICESat-2 data has remarkably enhanced the accuracy of DEM modeling utilizing GF-7 OPSSI, and the Root Mean Square Error (RMSE) has been reduced from the range of 5–10 m to 2–6 m. (2) Multi-characteristic constraint filtering is crucial for the identification of high quality ICESat-2 control points in flat and low relief areas. When implementing this filtering method, the established criteria should comprehensively consider both the quantity and the spatial distribution of control points to ensure optimal results. (3) Terrain Matching Correction on ICESat-2 data has effectively elevated the vertical accuracy of DEM modeling, particularly in regions with flat terrain. The RMSE of the vertical accuracy in such areas can be decreased by 1–3 m. In summary, the integration of spaceborne laser altimeter data with OPSSI holds immense significance for the production of large-scale and high-accuracy DEMs, offering a promising solution for terrain modeling and analysis on regional scales.</div></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":"138 ","pages":"Article 104485"},"PeriodicalIF":7.6000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843225001323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) data with Optical Photogrammetric Satellite Stereo Imagery (OPSSI) for Block Adjustment (BA) has emerged as a novel approach for generating large-area, high-accuracy Digital Elevation Models (DEMs). However, owing to the discrepancies between these two data platforms and the systematic errors of their sensors, errors arise in the BA fusion outcomes during the matching process of the two datasets. To tackle this issue, this paper proposes a method aimed at enhancing the accuracy of the BA process. Initially, the multi-characteristic constraint is used to filter the ICESat-2 ATL08 product to obtain control points and check points. Subsequently, the Terrain Matching Correction is applied to control points, and then integrated with the GF-7 OPSSI for BA to generate DEM. Ultimately, the check points are employed to assess the accuracy of the established DEM. Experiments in a 2,000 km2 test area in the Wuding River Basin show that: (1) The inclusion of ICESat-2 data has remarkably enhanced the accuracy of DEM modeling utilizing GF-7 OPSSI, and the Root Mean Square Error (RMSE) has been reduced from the range of 5–10 m to 2–6 m. (2) Multi-characteristic constraint filtering is crucial for the identification of high quality ICESat-2 control points in flat and low relief areas. When implementing this filtering method, the established criteria should comprehensively consider both the quantity and the spatial distribution of control points to ensure optimal results. (3) Terrain Matching Correction on ICESat-2 data has effectively elevated the vertical accuracy of DEM modeling, particularly in regions with flat terrain. The RMSE of the vertical accuracy in such areas can be decreased by 1–3 m. In summary, the integration of spaceborne laser altimeter data with OPSSI holds immense significance for the production of large-scale and high-accuracy DEMs, offering a promising solution for terrain modeling and analysis on regional scales.
求助全文
约1分钟内获得全文 求助全文
来源期刊
International journal of applied earth observation and geoinformation : ITC journal
International journal of applied earth observation and geoinformation : ITC journal Global and Planetary Change, Management, Monitoring, Policy and Law, Earth-Surface Processes, Computers in Earth Sciences
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
77 days
期刊介绍: The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信