Real-time process safety and systems decision-making toward safe and smart chemical manufacturing

IF 3 Q2 ENGINEERING, CHEMICAL
Austin Braniff , Sahithi Srijana Akundi , Yuanxing Liu , Beatriz Dantas , Shayan S. Niknezhad , Faisal Khan , Efstratios N. Pistikopoulos , Yuhe Tian
{"title":"Real-time process safety and systems decision-making toward safe and smart chemical manufacturing","authors":"Austin Braniff ,&nbsp;Sahithi Srijana Akundi ,&nbsp;Yuanxing Liu ,&nbsp;Beatriz Dantas ,&nbsp;Shayan S. Niknezhad ,&nbsp;Faisal Khan ,&nbsp;Efstratios N. Pistikopoulos ,&nbsp;Yuhe Tian","doi":"10.1016/j.dche.2025.100227","DOIUrl":null,"url":null,"abstract":"<div><div>The ongoing digital transformation has created new opportunities for chemical manufacturing with increasing plant interconnectivity and data accessibility. This paper reviews state-of-the-art research developments which offer the potential for real-time process safety and systems decision-making in the digital era. An overview is first presented on online process safety management approaches, including dynamic risk analysis and fault diagnosis/prognosis. Advanced operability and control methods are then discussed to achieve safely optimal operations under uncertainty (e.g., flexibility analysis, safety-aware control, fault-tolerant control). We highlight the connections between systems-based operation and process safety management to achieve operational excellence while proactively reducing potential safety losses. We also review the developments and showcases of digital twins paving the way to actual cyber–physical integration. Outstanding challenges and opportunities are identified such as safe data-driven control, integrated operability, safety and control, cyber–physical demonstration, etc. Toward this direction, we present our ongoing developments of the REal-Time Risk-based Optimization (RETRO) framework for safe and smart process operations.</div></div>","PeriodicalId":72815,"journal":{"name":"Digital Chemical Engineering","volume":"15 ","pages":"Article 100227"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772508125000110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The ongoing digital transformation has created new opportunities for chemical manufacturing with increasing plant interconnectivity and data accessibility. This paper reviews state-of-the-art research developments which offer the potential for real-time process safety and systems decision-making in the digital era. An overview is first presented on online process safety management approaches, including dynamic risk analysis and fault diagnosis/prognosis. Advanced operability and control methods are then discussed to achieve safely optimal operations under uncertainty (e.g., flexibility analysis, safety-aware control, fault-tolerant control). We highlight the connections between systems-based operation and process safety management to achieve operational excellence while proactively reducing potential safety losses. We also review the developments and showcases of digital twins paving the way to actual cyber–physical integration. Outstanding challenges and opportunities are identified such as safe data-driven control, integrated operability, safety and control, cyber–physical demonstration, etc. Toward this direction, we present our ongoing developments of the REal-Time Risk-based Optimization (RETRO) framework for safe and smart process operations.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信