Generalized Metaplectic Convolution-Based Cohen's Class Time-Frequency Distribution: Theory and Application

IF 2.9 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Manjun Cui;Zhichao Zhang;Jie Han;Yunjie Chen;Chunzheng Cao
{"title":"Generalized Metaplectic Convolution-Based Cohen's Class Time-Frequency Distribution: Theory and Application","authors":"Manjun Cui;Zhichao Zhang;Jie Han;Yunjie Chen;Chunzheng Cao","doi":"10.1109/OJSP.2025.3545337","DOIUrl":null,"url":null,"abstract":"The convolution type of the Cohen's class time-frequency distribution (CCTFD) is a useful and effective time-frequency analysis tool for additive noises jamming signals. However, it can't meet the requirement of high-performance denoising under low signal-to-noise ratio conditions. In this paper, we define the generalized metaplectic convolution-based Cohen's class time-frequency distribution (GMC-CCTFD) by replacing the traditional convolution operator in CCTFD with the generalized convolution operator of metaplectic transform (MT). This new definition leverages the high degrees of freedom and flexibility of MT, improving performance in non-stationary signal analysis. We then establish a fundamental theory about the GMC-CCTFD's essential properties. By integrating the Wiener filter principle with the time-frequency filtering mechanism of GMC-CCTFD, we design a least-squares adaptive filter in the Wigner distribution-MT domain. This allows us to achieve adaptive filtering denoising based on GMC-CCTFD, giving birth to the least-squares adaptive filter-based GMC-CCTFD. Furthermore, we conduct several examples and apply the proposed filtering method to real-world datasets, demonstrating its superior performance in noise suppression compared to some state-of-the-art methods.","PeriodicalId":73300,"journal":{"name":"IEEE open journal of signal processing","volume":"6 ","pages":"348-368"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10902015","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of signal processing","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10902015/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The convolution type of the Cohen's class time-frequency distribution (CCTFD) is a useful and effective time-frequency analysis tool for additive noises jamming signals. However, it can't meet the requirement of high-performance denoising under low signal-to-noise ratio conditions. In this paper, we define the generalized metaplectic convolution-based Cohen's class time-frequency distribution (GMC-CCTFD) by replacing the traditional convolution operator in CCTFD with the generalized convolution operator of metaplectic transform (MT). This new definition leverages the high degrees of freedom and flexibility of MT, improving performance in non-stationary signal analysis. We then establish a fundamental theory about the GMC-CCTFD's essential properties. By integrating the Wiener filter principle with the time-frequency filtering mechanism of GMC-CCTFD, we design a least-squares adaptive filter in the Wigner distribution-MT domain. This allows us to achieve adaptive filtering denoising based on GMC-CCTFD, giving birth to the least-squares adaptive filter-based GMC-CCTFD. Furthermore, we conduct several examples and apply the proposed filtering method to real-world datasets, demonstrating its superior performance in noise suppression compared to some state-of-the-art methods.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.30
自引率
0.00%
发文量
0
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信