Defective non-homogeneous bismuth-based photocatalysts with (Bi0S/Bi0I)-VBi-VO charge transfer channels for efficient water disinfection

IF 9.7 1区 化学 Q1 CHEMISTRY, PHYSICAL
Lihui Guo , Yuanting Wu , Weizhi Tian , Xiaoying Wang , Jingyue Hu , Xinmeng Zhang , Ou Hai , Hulin Liu , Yunlong Xue , Guoqiang Tan , Xiao-Lei Sh , Zhi-Gang Chen
{"title":"Defective non-homogeneous bismuth-based photocatalysts with (Bi0S/Bi0I)-VBi-VO charge transfer channels for efficient water disinfection","authors":"Lihui Guo ,&nbsp;Yuanting Wu ,&nbsp;Weizhi Tian ,&nbsp;Xiaoying Wang ,&nbsp;Jingyue Hu ,&nbsp;Xinmeng Zhang ,&nbsp;Ou Hai ,&nbsp;Hulin Liu ,&nbsp;Yunlong Xue ,&nbsp;Guoqiang Tan ,&nbsp;Xiao-Lei Sh ,&nbsp;Zhi-Gang Chen","doi":"10.1016/j.jcis.2025.137272","DOIUrl":null,"url":null,"abstract":"<div><div>Development of plasma-defect pair-modified photocatalysts with high performance present a significant advance in photocatalytic water disinfection. Here, we report the synthesis of Bi/Bi<sub>12</sub>SiO<sub>20</sub>/Bi<sub>2</sub>O<sub>2</sub>SiO<sub>3</sub>/Bi<sub>2</sub>WO<sub>6</sub>/BiOBr/BiOI (BBWSBI) photocatalysts incorporating surface and interfacial plasma Bi<sup>0</sup> (Bi<sup>0</sup><sub>S</sub>/Bi<sup>0</sup><sub>I</sub>), Bi vacancies (V<sub>Bi</sub>), and oxygen vacancies (V<sub>O</sub>). The as-prepared BBWSBI exhibits near-complete degradation of Rhodamine B (Rh B) within 30 min and achieved an inhibition rate of approximately 100 % against <em>Escherichia coli</em> (<em>E. coli</em>) within 1 h under simulated sunlight, outperforming most previously documented Bi-based photocatalysts. Density Functional Theory (DFT) and in situ X-ray Photoelectron Spectroscopy (XPS) identified an efficient charge transfer pathway in a type-II/(type-Z/type-Z)/type-Z heterojunction as follows: conduction band (CB) → V<sub>Bi</sub> → Bi<sup>0</sup><sub>I</sub> → valence band (VB) (←Bi<sup>0</sup><sub>S</sub>) → V<sub>O</sub>. This pathway significantly improved the charge separation efficiency of the photocatalyst. Additionally, the photocatalytic degradation mechanisms were explored via liquid chromatography–mass spectrometry, revealing that Bi<sup>0</sup><sub>S</sub>-V<sub>Bi</sub>-V<sub>O</sub> promoted pollutant molecule adsorption and activation. This study offers a new approach to constructing charge transfer pathways in water disinfection photocatalysts through the incorporation of plasma defect pairs.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"690 ","pages":"Article 137272"},"PeriodicalIF":9.7000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725006563","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Development of plasma-defect pair-modified photocatalysts with high performance present a significant advance in photocatalytic water disinfection. Here, we report the synthesis of Bi/Bi12SiO20/Bi2O2SiO3/Bi2WO6/BiOBr/BiOI (BBWSBI) photocatalysts incorporating surface and interfacial plasma Bi0 (Bi0S/Bi0I), Bi vacancies (VBi), and oxygen vacancies (VO). The as-prepared BBWSBI exhibits near-complete degradation of Rhodamine B (Rh B) within 30 min and achieved an inhibition rate of approximately 100 % against Escherichia coli (E. coli) within 1 h under simulated sunlight, outperforming most previously documented Bi-based photocatalysts. Density Functional Theory (DFT) and in situ X-ray Photoelectron Spectroscopy (XPS) identified an efficient charge transfer pathway in a type-II/(type-Z/type-Z)/type-Z heterojunction as follows: conduction band (CB) → VBi → Bi0I → valence band (VB) (←Bi0S) → VO. This pathway significantly improved the charge separation efficiency of the photocatalyst. Additionally, the photocatalytic degradation mechanisms were explored via liquid chromatography–mass spectrometry, revealing that Bi0S-VBi-VO promoted pollutant molecule adsorption and activation. This study offers a new approach to constructing charge transfer pathways in water disinfection photocatalysts through the incorporation of plasma defect pairs.

Abstract Image

具有(Bi0S/Bi0I)-VBi-VO电荷转移通道的缺陷非均相铋基光催化剂用于高效水消毒
高性能等离子体缺陷对修饰光催化剂的开发是光催化水消毒的重要进展。在这里,我们报道了结合表面和界面等离子体Bi0 (Bi0S/Bi0I)、Bi空位(VBi)和氧空位(VO)的Bi/Bi12SiO20/Bi2O2SiO3/Bi2WO6/BiOBr/BiOI (BBWSBI)光催化剂的合成。制备的BBWSBI在30分钟内几乎完全降解罗丹明B (Rh B),在模拟阳光下1小时内对大肠杆菌(E. coli)的抑制率约为100%,优于大多数先前记录的铋基光催化剂。密度泛函理论(DFT)和原位x射线光电子能谱(XPS)在ii型/(z型/ z型)/ z型异质结中发现了一条高效的电荷转移途径:导带(CB)→VBi→Bi0I→价带(VB)(←Bi0S)→VO。该途径显著提高了光催化剂的电荷分离效率。此外,通过液相色谱-质谱分析探讨了Bi0S-VBi-VO光催化降解机制,揭示了Bi0S-VBi-VO促进污染物分子的吸附和活化。本研究为构建水消毒光催化剂中等离子体缺陷对的电荷转移途径提供了一种新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信