Rapid immobilization of Ag/ZnO nanocomposite on Kanthal mesh for efficient removal of organic dye and heavy metal ions

IF 4.7 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Anh Thi Le , Chee-Meng Koe , Thi Duy Hanh Le , Wai Kian Tan , Nguyen Anh Tuan Huynh , Swee-Yong Pung
{"title":"Rapid immobilization of Ag/ZnO nanocomposite on Kanthal mesh for efficient removal of organic dye and heavy metal ions","authors":"Anh Thi Le ,&nbsp;Chee-Meng Koe ,&nbsp;Thi Duy Hanh Le ,&nbsp;Wai Kian Tan ,&nbsp;Nguyen Anh Tuan Huynh ,&nbsp;Swee-Yong Pung","doi":"10.1016/j.matchemphys.2025.130692","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a novel, scalable photocatalytic system for water treatment, developed by rapidly immobilizing Ag/ZnO nanostructures onto a Kanthal mesh support. The Ag/ZnO/mesh nanocomposite was synthesized via a combined direct heating and photoreduction method, exhibiting high ZnO crystallinity and uniform Ag nanoparticle deposition (10.6 ± 2.3 nm). Remarkably, this immobilized photocatalyst achieved 92.4 % degradation of 2 ppm Rhodamine B (RhB) and maintained 90 % efficiency after five reuse cycles, demonstrating exceptional stability even at RhB concentrations up to 10 ppm. Furthermore, the composite exhibited approximately 80 % removal efficiency for Pb<sup>2+</sup> ions, achieved through adsorption, and facilitated the photocatalytic reduction of Cu<sup>2+</sup> ions. This superior performance is attributed to the synergistic effects of Ag coupling, enhancing light absorption and charge separation, and the high surface area of the Kanthal mesh. This work lays a foundation for scalable production of immobilized photocatalytic materials on supportive substrates, paving the way for their implementation in tertiary wastewater treatment.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"339 ","pages":"Article 130692"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254058425003384","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a novel, scalable photocatalytic system for water treatment, developed by rapidly immobilizing Ag/ZnO nanostructures onto a Kanthal mesh support. The Ag/ZnO/mesh nanocomposite was synthesized via a combined direct heating and photoreduction method, exhibiting high ZnO crystallinity and uniform Ag nanoparticle deposition (10.6 ± 2.3 nm). Remarkably, this immobilized photocatalyst achieved 92.4 % degradation of 2 ppm Rhodamine B (RhB) and maintained 90 % efficiency after five reuse cycles, demonstrating exceptional stability even at RhB concentrations up to 10 ppm. Furthermore, the composite exhibited approximately 80 % removal efficiency for Pb2+ ions, achieved through adsorption, and facilitated the photocatalytic reduction of Cu2+ ions. This superior performance is attributed to the synergistic effects of Ag coupling, enhancing light absorption and charge separation, and the high surface area of the Kanthal mesh. This work lays a foundation for scalable production of immobilized photocatalytic materials on supportive substrates, paving the way for their implementation in tertiary wastewater treatment.
Kanthal网快速固定化Ag/ZnO纳米复合材料高效去除有机染料和重金属离子
本研究提出了一种新型的、可扩展的水处理光催化系统,该系统通过将Ag/ZnO纳米结构快速固定在Kanthal网支架上而开发。采用直接加热和光还原相结合的方法合成了Ag/ZnO/网状纳米复合材料,该复合材料具有较高的ZnO结晶度和均匀的Ag纳米颗粒沉积(10.6±2.3 nm)。值得注意的是,这种固定化光催化剂对2 ppm罗丹明B (RhB)的降解率达到92.4%,并且在5次重复使用循环后保持90%的效率,即使在RhB浓度高达10 ppm时也表现出优异的稳定性。此外,该复合材料对Pb2+离子的去除效率约为80%,通过吸附实现,并促进了Cu2+离子的光催化还原。这种优异的性能归因于Ag耦合的协同效应,增强光吸收和电荷分离,以及Kanthal网的高表面积。这项工作为固定化光催化材料在支撑基板上的规模化生产奠定了基础,为其在三级废水处理中的应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Chemistry and Physics
Materials Chemistry and Physics 工程技术-材料科学:综合
CiteScore
8.70
自引率
4.30%
发文量
1515
审稿时长
69 days
期刊介绍: Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信