Progressive drying of the hydrothermal system of La Soufrière de Guadeloupe (French West Indies) revealed by multi-year monitoring of chlorine isotopic composition of fumarolic HCl

IF 2.4 3区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY
Étienne Le Glas , Magali Bonifacie , Roberto Moretti , Vincent Robert , Pierre Agrinier , Jabrane Labidi , Gérard Bardoux , Laëtitia Pantobe , Arnaud Burtin , Élodie Chillin-Eusebe , Tristan Didier , Manuel Inostroza
{"title":"Progressive drying of the hydrothermal system of La Soufrière de Guadeloupe (French West Indies) revealed by multi-year monitoring of chlorine isotopic composition of fumarolic HCl","authors":"Étienne Le Glas ,&nbsp;Magali Bonifacie ,&nbsp;Roberto Moretti ,&nbsp;Vincent Robert ,&nbsp;Pierre Agrinier ,&nbsp;Jabrane Labidi ,&nbsp;Gérard Bardoux ,&nbsp;Laëtitia Pantobe ,&nbsp;Arnaud Burtin ,&nbsp;Élodie Chillin-Eusebe ,&nbsp;Tristan Didier ,&nbsp;Manuel Inostroza","doi":"10.1016/j.jvolgeores.2025.108306","DOIUrl":null,"url":null,"abstract":"<div><div>Closed-conduit volcanoes develop hydrothermal aquifers where infiltrating waters dissolve magmatic gases such as SO₂, HCl, and HF. The extent of this “scrubbing effect” is traditionally tracked using CO₂/SO₂ or CO₂/S<sub>Total</sub>, but these ratios can also be modified by secondary processes. Given the high solubility of gaseous HCl<sub>(g)</sub> into aqueous water, we assess here chlorine isotopic compositions (δ<sup>37</sup>Cl) in fumarolic HCl<sub>(g)</sub> as a potential quantitative index of scrubbing.</div><div>We present three years and a half (January 2018 to May 2021) of δ<sup>37</sup>Cl and chlorine concentrations [Cl] data from fumarolic gases at La Soufrière de Guadeloupe, alongside traditional geochemical tracers in volcanology. Our data show strong negative correlation between δ<sup>37</sup>Cl and [Cl] values, suggesting variable extents of HCl dissolution into the hydrothermal aquifer through time. High δ<sup>37</sup>Cl values associated to low [Cl] indicate intense <sup>35</sup>Cl loss into the aquifer, while low δ<sup>37</sup>Cl values with high [Cl] likely reflect more pristine magmatic signatures with minimal extents of scrubbing.</div><div>The observed δ<sup>37</sup>Cl–[Cl] trends suggest Cl isotopic fractionation factors between gas and liquid Δ<sub>g-l</sub> varying between +2.5 and +5 ‰. These values are higher than expected at equilibrium, suggesting kinetic fractionations likely resulting from rapid gas flow (preventing isotopic equilibration with liquid water). The fact that comparable δ<sup>37</sup>Cl–[Cl] trends are found at Poás (Costa Rica) and Vulcano (Italy) suggests that such kinetic fractionations during HCl scrubbing may be widespread.</div><div>Comparisons between δ<sup>37</sup>Cl and CO₂/CH₄ ratios and the modeled groundwater level within the dome suggest that variations in scrubbing at La Soufrière are primarily driven by varying magmatic inputs. The progressive decrease in δ<sup>37</sup>Cl, associated with increasing [Cl] from 2019 to 2021, likely reflects long-term aquifer drying, predating the observed rise in fumarolic temperatures above 150 °C in mid-2023.</div></div>","PeriodicalId":54753,"journal":{"name":"Journal of Volcanology and Geothermal Research","volume":"462 ","pages":"Article 108306"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Volcanology and Geothermal Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377027325000423","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Closed-conduit volcanoes develop hydrothermal aquifers where infiltrating waters dissolve magmatic gases such as SO₂, HCl, and HF. The extent of this “scrubbing effect” is traditionally tracked using CO₂/SO₂ or CO₂/STotal, but these ratios can also be modified by secondary processes. Given the high solubility of gaseous HCl(g) into aqueous water, we assess here chlorine isotopic compositions (δ37Cl) in fumarolic HCl(g) as a potential quantitative index of scrubbing.
We present three years and a half (January 2018 to May 2021) of δ37Cl and chlorine concentrations [Cl] data from fumarolic gases at La Soufrière de Guadeloupe, alongside traditional geochemical tracers in volcanology. Our data show strong negative correlation between δ37Cl and [Cl] values, suggesting variable extents of HCl dissolution into the hydrothermal aquifer through time. High δ37Cl values associated to low [Cl] indicate intense 35Cl loss into the aquifer, while low δ37Cl values with high [Cl] likely reflect more pristine magmatic signatures with minimal extents of scrubbing.
The observed δ37Cl–[Cl] trends suggest Cl isotopic fractionation factors between gas and liquid Δg-l varying between +2.5 and +5 ‰. These values are higher than expected at equilibrium, suggesting kinetic fractionations likely resulting from rapid gas flow (preventing isotopic equilibration with liquid water). The fact that comparable δ37Cl–[Cl] trends are found at Poás (Costa Rica) and Vulcano (Italy) suggests that such kinetic fractionations during HCl scrubbing may be widespread.
Comparisons between δ37Cl and CO₂/CH₄ ratios and the modeled groundwater level within the dome suggest that variations in scrubbing at La Soufrière are primarily driven by varying magmatic inputs. The progressive decrease in δ37Cl, associated with increasing [Cl] from 2019 to 2021, likely reflects long-term aquifer drying, predating the observed rise in fumarolic temperatures above 150 °C in mid-2023.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.90
自引率
13.80%
发文量
183
审稿时长
19.7 weeks
期刊介绍: An international research journal with focus on volcanic and geothermal processes and their impact on the environment and society. Submission of papers covering the following aspects of volcanology and geothermal research are encouraged: (1) Geological aspects of volcanic systems: volcano stratigraphy, structure and tectonic influence; eruptive history; evolution of volcanic landforms; eruption style and progress; dispersal patterns of lava and ash; analysis of real-time eruption observations. (2) Geochemical and petrological aspects of volcanic rocks: magma genesis and evolution; crystallization; volatile compositions, solubility, and degassing; volcanic petrography and textural analysis. (3) Hydrology, geochemistry and measurement of volcanic and hydrothermal fluids: volcanic gas emissions; fumaroles and springs; crater lakes; hydrothermal mineralization. (4) Geophysical aspects of volcanic systems: physical properties of volcanic rocks and magmas; heat flow studies; volcano seismology, geodesy and remote sensing. (5) Computational modeling and experimental simulation of magmatic and hydrothermal processes: eruption dynamics; magma transport and storage; plume dynamics and ash dispersal; lava flow dynamics; hydrothermal fluid flow; thermodynamics of aqueous fluids and melts. (6) Volcano hazard and risk research: hazard zonation methodology, development of forecasting tools; assessment techniques for vulnerability and impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信