Graph Convolutional Networks With Collaborative Feature Fusion for Sequential Recommendation

IF 7.5 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Jianping Gou;Youhui Cheng;Yibing Zhan;Baosheng Yu;Weihua Ou;Yi Zhang
{"title":"Graph Convolutional Networks With Collaborative Feature Fusion for Sequential Recommendation","authors":"Jianping Gou;Youhui Cheng;Yibing Zhan;Baosheng Yu;Weihua Ou;Yi Zhang","doi":"10.1109/TBDATA.2024.3426355","DOIUrl":null,"url":null,"abstract":"Sequential recommendation seeks to understand user preferences based on their past actions and predict future interactions with items. Recently, several techniques for sequential recommendation have emerged, primarily leveraging graph convolutional networks (GCNs) for their ability to model relationships effectively. However, real-world scenarios often involve sparse interactions, where early and recent short-term preferences play distinct roles in the recommendation process. Consequently, vanilla GCNs struggle to effectively capture the explicit correlations between these early and recent short-term preferences. To address these challenges, we introduce a novel approach termed Graph Convolutional Networks with Collaborative Feature Fusion (COFF). Specifically, our method addresses the issue by initially dividing each user interaction sequence into two segments. We then construct two separate graphs for these segments, aiming to capture the user's early and recent short-term preferences independently. To obtain robust prediction, we employ multiple GCNs in a collaborative distillation manner, incorporating a feature fusion module to establish connections between the early and recent short-term preferences. This approach enables a more precise representation of user preferences. Experimental evaluations conducted on five popular sequential recommendation datasets demonstrate that our COFF model outperforms recent state-of-the-art methods in terms of recommendation accuracy.","PeriodicalId":13106,"journal":{"name":"IEEE Transactions on Big Data","volume":"11 2","pages":"735-747"},"PeriodicalIF":7.5000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Big Data","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10592772/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Sequential recommendation seeks to understand user preferences based on their past actions and predict future interactions with items. Recently, several techniques for sequential recommendation have emerged, primarily leveraging graph convolutional networks (GCNs) for their ability to model relationships effectively. However, real-world scenarios often involve sparse interactions, where early and recent short-term preferences play distinct roles in the recommendation process. Consequently, vanilla GCNs struggle to effectively capture the explicit correlations between these early and recent short-term preferences. To address these challenges, we introduce a novel approach termed Graph Convolutional Networks with Collaborative Feature Fusion (COFF). Specifically, our method addresses the issue by initially dividing each user interaction sequence into two segments. We then construct two separate graphs for these segments, aiming to capture the user's early and recent short-term preferences independently. To obtain robust prediction, we employ multiple GCNs in a collaborative distillation manner, incorporating a feature fusion module to establish connections between the early and recent short-term preferences. This approach enables a more precise representation of user preferences. Experimental evaluations conducted on five popular sequential recommendation datasets demonstrate that our COFF model outperforms recent state-of-the-art methods in terms of recommendation accuracy.
基于协同特征融合的序列推荐图卷积网络
顺序推荐旨在根据用户过去的行为了解他们的偏好,并预测未来与项目的交互。最近,出现了几种顺序推荐技术,主要利用图卷积网络(GCNs)有效建模关系的能力。然而,现实世界的场景通常涉及稀疏的交互,其中早期和最近的短期偏好在推荐过程中扮演不同的角色。因此,香草GCNs很难有效地捕捉这些早期和近期短期偏好之间的明确相关性。为了解决这些挑战,我们引入了一种新的方法,称为具有协同特征融合(COFF)的图卷积网络。具体地说,我们的方法通过最初将每个用户交互序列划分为两个部分来解决这个问题。然后,我们为这些细分构建两个单独的图,旨在独立捕获用户的早期和最近的短期偏好。为了获得稳健的预测,我们以协作蒸馏的方式使用多个GCNs,并结合特征融合模块来建立早期和近期短期偏好之间的联系。这种方法可以更精确地表示用户偏好。在五个流行的顺序推荐数据集上进行的实验评估表明,我们的COFF模型在推荐准确性方面优于最近最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.80
自引率
2.80%
发文量
114
期刊介绍: The IEEE Transactions on Big Data publishes peer-reviewed articles focusing on big data. These articles present innovative research ideas and application results across disciplines, including novel theories, algorithms, and applications. Research areas cover a wide range, such as big data analytics, visualization, curation, management, semantics, infrastructure, standards, performance analysis, intelligence extraction, scientific discovery, security, privacy, and legal issues specific to big data. The journal also prioritizes applications of big data in fields generating massive datasets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信