{"title":"Analysis and computation for quenching solution to the time-space fractional Kawarada problem","authors":"Dingding Cao, Changpin Li","doi":"10.1007/s13540-025-00384-7","DOIUrl":null,"url":null,"abstract":"<p>This study focuses on the existence, uniqueness, and quenching behavior of solution to the time-space fractional Kawarada problem, where the time derivative is the Caputo-Hadamard derivative and the spatial derivative is the fractional Laplacian. The mild solution represented by Fox <i>H</i>-function, based on the fundamental solution, is considered in space <span>\\(C\\left( [a, T], L^r(\\mathbb {R}^d)\\right) \\)</span>. We use the fractional maximum principles to prove <span>\\(u(\\textrm{x},t)\\ge u_a(\\textrm{x})\\)</span> for the positive initial value. Then the relationship between quenching phenomena and the size of domain is examined. Finally, the finite difference scheme is established for solving the quenching solution to the considered problem in one and two space dimensions. The numerical simulations show the effectiveness and feasibility of the theoretical analysis.</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"10 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Calculus and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-025-00384-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study focuses on the existence, uniqueness, and quenching behavior of solution to the time-space fractional Kawarada problem, where the time derivative is the Caputo-Hadamard derivative and the spatial derivative is the fractional Laplacian. The mild solution represented by Fox H-function, based on the fundamental solution, is considered in space \(C\left( [a, T], L^r(\mathbb {R}^d)\right) \). We use the fractional maximum principles to prove \(u(\textrm{x},t)\ge u_a(\textrm{x})\) for the positive initial value. Then the relationship between quenching phenomena and the size of domain is examined. Finally, the finite difference scheme is established for solving the quenching solution to the considered problem in one and two space dimensions. The numerical simulations show the effectiveness and feasibility of the theoretical analysis.
期刊介绍:
Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.