On black holes in teleparallel torsion theories of gravity

IF 2.1 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
A. A. Coley, N. T. Layden, D. F. López
{"title":"On black holes in teleparallel torsion theories of gravity","authors":"A. A. Coley,&nbsp;N. T. Layden,&nbsp;D. F. López","doi":"10.1007/s10714-025-03387-0","DOIUrl":null,"url":null,"abstract":"<div><p>We first present an overview of the Schwarzschild vacuum spacetime within general relativity, with particular emphasis on the role of scalar polynomial invariants and the null frame approach (and the related Cartan invariants), that justifies the conventional interpretation of the Schwarzschild geometry as a black hole spacetime admitting a horizon (at <span>\\(r=2M\\)</span> in Schwarzschild coordinates) shielding a singular point at the origin. We then consider static spherical symmetric vacuum teleparallel spacetimes in which the torsion characterizes the geometry, and the scalar invariants of interest are those constructed from the torsion and its (covariant) derivatives. We investigate the Schwarzschild-like spacetime in the teleparallel equivalent of general relativity and find that the torsion scalar invariants (and, in particular, the scalar <i>T</i>) diverge at the putative “Schwarzschild” horizon. In this sense the resulting spacetime is <i>not</i> a black hole spacetime. We then briefly consider the Kerr-like solution in the teleparallel equivalent of general relativity and obtain a similar result. Finally, we investigate static spherically symmetric vacuum spacetimes within the more general <i>F</i>(<i>T</i>) teleparallel gravity and show that if a such a geometry admits a horizon, then the torsion scalar <i>T</i> necessarily diverges there; consequently in this sense such a geometry also does <i>not</i> represent a black hole.</p></div>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":"57 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Relativity and Gravitation","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10714-025-03387-0","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

We first present an overview of the Schwarzschild vacuum spacetime within general relativity, with particular emphasis on the role of scalar polynomial invariants and the null frame approach (and the related Cartan invariants), that justifies the conventional interpretation of the Schwarzschild geometry as a black hole spacetime admitting a horizon (at \(r=2M\) in Schwarzschild coordinates) shielding a singular point at the origin. We then consider static spherical symmetric vacuum teleparallel spacetimes in which the torsion characterizes the geometry, and the scalar invariants of interest are those constructed from the torsion and its (covariant) derivatives. We investigate the Schwarzschild-like spacetime in the teleparallel equivalent of general relativity and find that the torsion scalar invariants (and, in particular, the scalar T) diverge at the putative “Schwarzschild” horizon. In this sense the resulting spacetime is not a black hole spacetime. We then briefly consider the Kerr-like solution in the teleparallel equivalent of general relativity and obtain a similar result. Finally, we investigate static spherically symmetric vacuum spacetimes within the more general F(T) teleparallel gravity and show that if a such a geometry admits a horizon, then the torsion scalar T necessarily diverges there; consequently in this sense such a geometry also does not represent a black hole.

我们首先概述了广义相对论中的施瓦兹柴尔德真空时空,特别强调了标量多项式不变式和空帧方法(以及相关的卡坦不变式)的作用,它们证明了将施瓦兹柴尔德几何解释为黑洞时空的传统解释是合理的,因为黑洞时空允许有一个视界(在施瓦兹柴尔德坐标中为\(r=2M\))屏蔽原点的奇异点。然后,我们考虑静态球对称真空远距平行时空,其中的扭转是几何的特征,感兴趣的标量不变式是由扭转及其(协变)导数构造的。我们研究了广义相对论远距平行等效中的类施瓦兹柴尔德时空,发现在假定的 "施瓦兹柴尔德 "视界处,扭转标量不变式(尤其是标量 T)发散。从这个意义上说,所得到的时空并不是黑洞时空。然后,我们简要地考虑了广义相对论远距平行等效中的类克尔解,并得到了类似的结果。最后,我们研究了更一般的 F(T) 远平行引力中的静态球对称真空时空,并证明了如果这样的几何体存在一个视界,那么扭转标量 T 必然在那里发散;因此,从这个意义上说,这样的几何体也不代表黑洞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
General Relativity and Gravitation
General Relativity and Gravitation 物理-天文与天体物理
CiteScore
4.60
自引率
3.60%
发文量
136
审稿时长
3 months
期刊介绍: General Relativity and Gravitation is a journal devoted to all aspects of modern gravitational science, and published under the auspices of the International Society on General Relativity and Gravitation. It welcomes in particular original articles on the following topics of current research: Analytical general relativity, including its interface with geometrical analysis Numerical relativity Theoretical and observational cosmology Relativistic astrophysics Gravitational waves: data analysis, astrophysical sources and detector science Extensions of general relativity Supergravity Gravitational aspects of string theory and its extensions Quantum gravity: canonical approaches, in particular loop quantum gravity, and path integral approaches, in particular spin foams, Regge calculus and dynamical triangulations Quantum field theory in curved spacetime Non-commutative geometry and gravitation Experimental gravity, in particular tests of general relativity The journal publishes articles on all theoretical and experimental aspects of modern general relativity and gravitation, as well as book reviews and historical articles of special interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信