Superior preclinical efficacy of co-treatment with BRG1/BRM and FLT3 inhibitor against AML cells with FLT3 mutations

IF 12.9 1区 医学 Q1 HEMATOLOGY
Warren Fiskus, Christopher P. Mill, Jessica Piel, Mike Collins, Murphy Hentemann, Branko Cuglievan, Christine E. Birdwell, Kaberi Das, Hanxi Hou, John A. Davis, Antrix Jain, Anna Malovannaya, Tapan M. Kadia, Naval Daver, Koji Sasaki, Koichi Takahashi, Danielle Hammond, Patrick K. Reville, Lauren B. Flores, Sanam Loghavi, Xiaoping Su, Courtney D. DiNardo, Kapil N. Bhalla
{"title":"Superior preclinical efficacy of co-treatment with BRG1/BRM and FLT3 inhibitor against AML cells with FLT3 mutations","authors":"Warren Fiskus, Christopher P. Mill, Jessica Piel, Mike Collins, Murphy Hentemann, Branko Cuglievan, Christine E. Birdwell, Kaberi Das, Hanxi Hou, John A. Davis, Antrix Jain, Anna Malovannaya, Tapan M. Kadia, Naval Daver, Koji Sasaki, Koichi Takahashi, Danielle Hammond, Patrick K. Reville, Lauren B. Flores, Sanam Loghavi, Xiaoping Su, Courtney D. DiNardo, Kapil N. Bhalla","doi":"10.1038/s41408-025-01251-7","DOIUrl":null,"url":null,"abstract":"<p>Although treatment with standard frontline therapies, including a FLT3 inhibitor (FLT3i) reduces AML burden and achieves clinical remissions, most patients with AML with FLT3 mutation relapse due to therapy-resistant stem/progenitor cells. The core ATPases, BRG1 (SMARCA4) and BRM (SMARCA2) of the canonical (c) BAF (BRG1/BRM-associated factor) complex is a dependency in AML cells, including those harboring FLT3 mutations. We have previously reported that treatment with FHD-286, a BRG1/BRM ATPases inhibitor, induces differentiation and loss of viability of AML stem/progenitor cells. Findings of present studies demonstrate that treatment with FHD-286 induces lethality in AML cells, regardless of sensitivity or resistance to FLT3i. This efficacy is associated with the induction of gene-expression perturbations responsible for growth inhibition, differentiation, as well as a reduced AML-initiating potential of the AML cells. Additionally, co-treatment with FHD-286 and FLT3i exerts superior pre-clinical efficacy against AML cells and patient-derived (PD) xenograft (PDX) models of AML with FLT3 mutations.</p>","PeriodicalId":8989,"journal":{"name":"Blood Cancer Journal","volume":"15 1","pages":""},"PeriodicalIF":12.9000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blood Cancer Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41408-025-01251-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Although treatment with standard frontline therapies, including a FLT3 inhibitor (FLT3i) reduces AML burden and achieves clinical remissions, most patients with AML with FLT3 mutation relapse due to therapy-resistant stem/progenitor cells. The core ATPases, BRG1 (SMARCA4) and BRM (SMARCA2) of the canonical (c) BAF (BRG1/BRM-associated factor) complex is a dependency in AML cells, including those harboring FLT3 mutations. We have previously reported that treatment with FHD-286, a BRG1/BRM ATPases inhibitor, induces differentiation and loss of viability of AML stem/progenitor cells. Findings of present studies demonstrate that treatment with FHD-286 induces lethality in AML cells, regardless of sensitivity or resistance to FLT3i. This efficacy is associated with the induction of gene-expression perturbations responsible for growth inhibition, differentiation, as well as a reduced AML-initiating potential of the AML cells. Additionally, co-treatment with FHD-286 and FLT3i exerts superior pre-clinical efficacy against AML cells and patient-derived (PD) xenograft (PDX) models of AML with FLT3 mutations.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.70
自引率
2.30%
发文量
153
审稿时长
>12 weeks
期刊介绍: Blood Cancer Journal is dedicated to publishing high-quality articles related to hematologic malignancies and related disorders. The journal welcomes submissions of original research, reviews, guidelines, and letters that are deemed to have a significant impact in the field. While the journal covers a wide range of topics, it particularly focuses on areas such as: Preclinical studies of new compounds, especially those that provide mechanistic insights Clinical trials and observations Reviews related to new drugs and current management of hematologic malignancies Novel observations related to new mutations, molecular pathways, and tumor genomics Blood Cancer Journal offers a forum for expedited publication of novel observations regarding new mutations or altered pathways.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信