Room-Temperature Magnetoelectric Switching and Magnetoelectric Memory Driven by Gate Voltage

IF 11.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Yang Cheng, Teng Xu, Di Tian, Xing He, Yiqing Dong, Hao Bai, Le Zhao, Haonan Jin, Shilei Zhang, Weibin Li, Manuel Valvidares, Pu Yu, Wanjun Jiang
{"title":"Room-Temperature Magnetoelectric Switching and Magnetoelectric Memory Driven by Gate Voltage","authors":"Yang Cheng, Teng Xu, Di Tian, Xing He, Yiqing Dong, Hao Bai, Le Zhao, Haonan Jin, Shilei Zhang, Weibin Li, Manuel Valvidares, Pu Yu, Wanjun Jiang","doi":"10.1103/physrevx.15.011060","DOIUrl":null,"url":null,"abstract":"Electric-field control of magnetism is one of the most promising routes for developing the energy-efficient magnetoresistive random access memory and spin-logic devices. Of particular interest is the electric-field-induced 180° perpendicular magnetization switching, which currently remains challenging. Here, we experimentally demonstrate the electric-field switching of perpendicular magnetization in a ferrimagnet FeTb in the absence of external magnetic fields. By utilizing ionic liquid gating at room temperature, the ferrimagnetic order can be reversibly switched as a result of the hydrogen injection or extraction under positive or negative gate voltages. Specifically, the hydrogen content pronouncedly modifies the spin and orbital magnetic moments of the Tb sublattice, which subsequently influences the relative magnitude and/or direction of the Fe and Tb sublattice magnetizations, resulting in the switching of ferrimagnetic order. More importantly, we demonstrate a prototype room-temperature three-terminal magnetoelectric memory device by incorporating the giant magnetoresistance effect with electric-field controllable ferrimagnetism. Our results reveal the prosperous aspects of ionic gating for enabling the electric-field-controllable magnetoelectric memory or logic devices. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"183 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.011060","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electric-field control of magnetism is one of the most promising routes for developing the energy-efficient magnetoresistive random access memory and spin-logic devices. Of particular interest is the electric-field-induced 180° perpendicular magnetization switching, which currently remains challenging. Here, we experimentally demonstrate the electric-field switching of perpendicular magnetization in a ferrimagnet FeTb in the absence of external magnetic fields. By utilizing ionic liquid gating at room temperature, the ferrimagnetic order can be reversibly switched as a result of the hydrogen injection or extraction under positive or negative gate voltages. Specifically, the hydrogen content pronouncedly modifies the spin and orbital magnetic moments of the Tb sublattice, which subsequently influences the relative magnitude and/or direction of the Fe and Tb sublattice magnetizations, resulting in the switching of ferrimagnetic order. More importantly, we demonstrate a prototype room-temperature three-terminal magnetoelectric memory device by incorporating the giant magnetoresistance effect with electric-field controllable ferrimagnetism. Our results reveal the prosperous aspects of ionic gating for enabling the electric-field-controllable magnetoelectric memory or logic devices. Published by the American Physical Society 2025
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review X
Physical Review X PHYSICS, MULTIDISCIPLINARY-
CiteScore
24.60
自引率
1.60%
发文量
197
审稿时长
3 months
期刊介绍: Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信