A network-level transport model of tau progression in the Alzheimer's brain.

Veronica Tora, Justin Torok, Michiel Bertsch, Ashish Raj
{"title":"A network-level transport model of tau progression in the Alzheimer's brain.","authors":"Veronica Tora, Justin Torok, Michiel Bertsch, Ashish Raj","doi":"10.1093/imammb/dqaf003","DOIUrl":null,"url":null,"abstract":"<p><p>One of the hallmarks of Alzheimer's disease (AD) is the accumulation and spread of toxic aggregates of tau protein. The progression of AD tau pathology is thought to be highly stereotyped, which is in part due to the fact that tau can spread between regions via the white matter tracts that connect them. Mathematically, this phenomenon has been described using models of \"network diffusion,\" where the rate of spread of tau between brain regions is proportional to its concentration gradient and the amount of white matter between them. Although these models can robustly predict the progression of pathology in a wide variety of neurodegenerative diseases, including AD, an underexplored aspect of tau spreading is that it is governed not simply by diffusion but also active transport along axonal microtubules. Spread can therefore take on a directional bias, resulting in distinct patterns of deposition, but current models struggle to capture this phenomenon. Recently, we have developed a mathematical model of the axonal transport of toxic tau proteins that takes into account the effects tau exerts on the molecular motors. Here we describe and implement a macroscopic version of this model, which we call the Network Transport Model (NTM). A key feature of this model is that, while it predicts tau dynamics at a regional level, it is parameterized in terms of only microscopic processes such as aggregation and transport rates; that is, differences in brain-wide tau progression can be explained by its microscopic properties. We provide numerical evidence that, as with the two-neuron model that the NTM extends, there are distinct and rich dynamics with respect to the overall rate of spread and the staging of pathology when we simulated the NTM on the hippocampal subnetwork. The theoretical insights provided by the NTM have broad implications for understanding AD pathophysiology more generally.</p>","PeriodicalId":94130,"journal":{"name":"Mathematical medicine and biology : a journal of the IMA","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical medicine and biology : a journal of the IMA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/imammb/dqaf003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One of the hallmarks of Alzheimer's disease (AD) is the accumulation and spread of toxic aggregates of tau protein. The progression of AD tau pathology is thought to be highly stereotyped, which is in part due to the fact that tau can spread between regions via the white matter tracts that connect them. Mathematically, this phenomenon has been described using models of "network diffusion," where the rate of spread of tau between brain regions is proportional to its concentration gradient and the amount of white matter between them. Although these models can robustly predict the progression of pathology in a wide variety of neurodegenerative diseases, including AD, an underexplored aspect of tau spreading is that it is governed not simply by diffusion but also active transport along axonal microtubules. Spread can therefore take on a directional bias, resulting in distinct patterns of deposition, but current models struggle to capture this phenomenon. Recently, we have developed a mathematical model of the axonal transport of toxic tau proteins that takes into account the effects tau exerts on the molecular motors. Here we describe and implement a macroscopic version of this model, which we call the Network Transport Model (NTM). A key feature of this model is that, while it predicts tau dynamics at a regional level, it is parameterized in terms of only microscopic processes such as aggregation and transport rates; that is, differences in brain-wide tau progression can be explained by its microscopic properties. We provide numerical evidence that, as with the two-neuron model that the NTM extends, there are distinct and rich dynamics with respect to the overall rate of spread and the staging of pathology when we simulated the NTM on the hippocampal subnetwork. The theoretical insights provided by the NTM have broad implications for understanding AD pathophysiology more generally.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信