Isolation and Biophysical Characterization of Extracellular Vesicles from Hairy Root Cultures.

IF 1 Q3 BIOLOGY
Marisa Conte, Elisa Cappetta, Mariaevelina Alfieri, Michele Bifolco, Eleonora Boccia, Mariapia Vietri, Alfredo Ambrosone
{"title":"Isolation and Biophysical Characterization of Extracellular Vesicles from Hairy Root Cultures.","authors":"Marisa Conte, Elisa Cappetta, Mariaevelina Alfieri, Michele Bifolco, Eleonora Boccia, Mariapia Vietri, Alfredo Ambrosone","doi":"10.21769/BioProtoc.5225","DOIUrl":null,"url":null,"abstract":"<p><p>Extracellular vesicles (EVs) are membrane-bound, non-replicating particles released by virtually all types of cells. EVs concentrate and deliver a plethora of biomolecules driving very important biological functions, including intercellular communication not only between cells of the same organism but also across different kingdoms. Plant extracellular vesicles (PEVs) are a promising alternative to mammalian EVs in biomedical applications. Here, we present an optimized and reproducible protocol for isolating PEVs from the hairy root (HR) cultures of medicinal plants <i>Salvia dominica</i> and <i>S. sclarea.</i> Our methodological approach introduces a significant advancement in the standardization of HR-EVs purification processes from plant biotechnological platforms, paving the way for their broader application across various sectors, including agriculture, pharmaceuticals, and nutraceuticals. Key features • Hairy roots serve as a plant biotechnological platform for the production of bioactive compounds. • Plant extracellular vesicles (EVs) provide a safer alternative to mammalian EVs for biomedical applications. • This protocol represents a significant advancement in the standardization of plant EV purification.</p>","PeriodicalId":93907,"journal":{"name":"Bio-protocol","volume":"15 5","pages":"e5225"},"PeriodicalIF":1.0000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11896773/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-protocol","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21769/BioProtoc.5225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Extracellular vesicles (EVs) are membrane-bound, non-replicating particles released by virtually all types of cells. EVs concentrate and deliver a plethora of biomolecules driving very important biological functions, including intercellular communication not only between cells of the same organism but also across different kingdoms. Plant extracellular vesicles (PEVs) are a promising alternative to mammalian EVs in biomedical applications. Here, we present an optimized and reproducible protocol for isolating PEVs from the hairy root (HR) cultures of medicinal plants Salvia dominica and S. sclarea. Our methodological approach introduces a significant advancement in the standardization of HR-EVs purification processes from plant biotechnological platforms, paving the way for their broader application across various sectors, including agriculture, pharmaceuticals, and nutraceuticals. Key features • Hairy roots serve as a plant biotechnological platform for the production of bioactive compounds. • Plant extracellular vesicles (EVs) provide a safer alternative to mammalian EVs for biomedical applications. • This protocol represents a significant advancement in the standardization of plant EV purification.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信