Leveraging basecaller's move table to generate a lightweight k-mer model for nanopore sequencing analysis.

Hiruna Samarakoon, Yuk Kei Wan, Sri Parameswaran, Jonathan Göke, Hasindu Gamaarachchi, Ira W Deveson
{"title":"Leveraging basecaller's move table to generate a lightweight k-mer model for nanopore sequencing analysis.","authors":"Hiruna Samarakoon, Yuk Kei Wan, Sri Parameswaran, Jonathan Göke, Hasindu Gamaarachchi, Ira W Deveson","doi":"10.1093/bioinformatics/btaf111","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Nanopore sequencing by Oxford Nanopore Technologies (ONT) enables direct analysis of DNA and RNA by capturing raw electrical signals. Different nanopore chemistries have varied k-mer lengths, current levels, and standard deviations, which are stored in 'k-mer models'. In cases where official models are lacking or unsuitable for specific sequencing conditions, tailored k-mer models are crucial to ensure precise signal-to-sequence alignment, analysis and interpretation. The process of transforming raw signal data into nucleotide sequences, known as basecalling, is a fundamental step in nanopore sequencing.</p><p><strong>Results: </strong>In this study, we leverage the move table produced by ONT's basecalling software to create a lightweight de novo k-mer model for RNA004 chemistry. We demonstrate the validity of our custom k-mer model by using it to guide signal-to-sequence alignment analysis, achieving high alignment rates (97.48%) compared to larger default models. Additionally, our 5-mer model exhibits similar performance as the default 9-mer models another analysis, such as detection of m6A RNA modifications. We provide our method, termed Poregen, as a generalisable approach for creation of custom, de novo k-mer models for nanopore signal data analysis.</p><p><strong>Availability and implementation: </strong>Poregen is an open source package under an MIT licence: https://github.com/hiruna72/poregen.</p><p><strong>Supplementary information: </strong>Supplementary Note 1.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Nanopore sequencing by Oxford Nanopore Technologies (ONT) enables direct analysis of DNA and RNA by capturing raw electrical signals. Different nanopore chemistries have varied k-mer lengths, current levels, and standard deviations, which are stored in 'k-mer models'. In cases where official models are lacking or unsuitable for specific sequencing conditions, tailored k-mer models are crucial to ensure precise signal-to-sequence alignment, analysis and interpretation. The process of transforming raw signal data into nucleotide sequences, known as basecalling, is a fundamental step in nanopore sequencing.

Results: In this study, we leverage the move table produced by ONT's basecalling software to create a lightweight de novo k-mer model for RNA004 chemistry. We demonstrate the validity of our custom k-mer model by using it to guide signal-to-sequence alignment analysis, achieving high alignment rates (97.48%) compared to larger default models. Additionally, our 5-mer model exhibits similar performance as the default 9-mer models another analysis, such as detection of m6A RNA modifications. We provide our method, termed Poregen, as a generalisable approach for creation of custom, de novo k-mer models for nanopore signal data analysis.

Availability and implementation: Poregen is an open source package under an MIT licence: https://github.com/hiruna72/poregen.

Supplementary information: Supplementary Note 1.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信