Identifying the active microbes driving organosulfur cycling from taurine and methionine in marine sediment.

IF 5.1 Q1 ECOLOGY
ISME communications Pub Date : 2025-02-25 eCollection Date: 2025-01-01 DOI:10.1093/ismeco/ycaf033
Ömer K Coskun, William D Orsi, Steven D'Hondt, Gonzalo V Gomez-Saez
{"title":"Identifying the active microbes driving organosulfur cycling from taurine and methionine in marine sediment.","authors":"Ömer K Coskun, William D Orsi, Steven D'Hondt, Gonzalo V Gomez-Saez","doi":"10.1093/ismeco/ycaf033","DOIUrl":null,"url":null,"abstract":"<p><p>Studies on microbial sulfur cycling in marine sediment have primarily centered on the cycling of inorganic sulfur. The microbial diversity underlying the cycling of organosulfur compounds is largely unexplored. In this study, we present the first quantification of dissolved organic sulfur (DOS) microbial assimilation in marine surface sediments using <sup>13</sup>C-DOS quantitative DNA stable isotope probing (qSIP). We sampled marine sediment from 493 m water depth on the Puerto Rico continental slope, measured <sup>13</sup>C-assimilation from two DOS substrates (<sup>13</sup>C-taurine and <sup>13</sup>C-methionine), and compared the <sup>13</sup>C-DOS assimilation to <sup>13</sup>C-glucose uptake. Taurine utilization was confined to bacteria, whereas methionine was degraded by bacteria and archaea, including methanogenic <i>Methanococcoides</i>. Globally widespread uncultivated clades of Gammaproteobacteria and Deltaproteobacteria were the main drivers of DOS cycling and exhibited increased assimilation of carbon from taurine and methionine, compared to glucose. Only one operational taxonomic unit (OTU) affiliated with <i>Neptuniibacter</i> was found to assimilate taurine and methionine, but not glucose, implying that microbes exclusively utilizing both DOS substrates as a carbon source in marine sediments are rare. Still, a substantial number of bacterial taxa exhibited a higher assimilation of <sup>13</sup>C from taurine or methionine, compared to glucose, indicating their preference for both DOS substrates over glucose as a carbon source in the sediment. These results represent the first quantitative assessment of organosulfur cycling from taurine and methionine by uncultivated microbes in a marine benthic environment.</p>","PeriodicalId":73516,"journal":{"name":"ISME communications","volume":"5 1","pages":"ycaf033"},"PeriodicalIF":5.1000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11905757/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismeco/ycaf033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Studies on microbial sulfur cycling in marine sediment have primarily centered on the cycling of inorganic sulfur. The microbial diversity underlying the cycling of organosulfur compounds is largely unexplored. In this study, we present the first quantification of dissolved organic sulfur (DOS) microbial assimilation in marine surface sediments using 13C-DOS quantitative DNA stable isotope probing (qSIP). We sampled marine sediment from 493 m water depth on the Puerto Rico continental slope, measured 13C-assimilation from two DOS substrates (13C-taurine and 13C-methionine), and compared the 13C-DOS assimilation to 13C-glucose uptake. Taurine utilization was confined to bacteria, whereas methionine was degraded by bacteria and archaea, including methanogenic Methanococcoides. Globally widespread uncultivated clades of Gammaproteobacteria and Deltaproteobacteria were the main drivers of DOS cycling and exhibited increased assimilation of carbon from taurine and methionine, compared to glucose. Only one operational taxonomic unit (OTU) affiliated with Neptuniibacter was found to assimilate taurine and methionine, but not glucose, implying that microbes exclusively utilizing both DOS substrates as a carbon source in marine sediments are rare. Still, a substantial number of bacterial taxa exhibited a higher assimilation of 13C from taurine or methionine, compared to glucose, indicating their preference for both DOS substrates over glucose as a carbon source in the sediment. These results represent the first quantitative assessment of organosulfur cycling from taurine and methionine by uncultivated microbes in a marine benthic environment.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信