Identification of a key peptide cyclase for novel cyclic peptide discovery in Pseudostellaria heterophylla.

IF 9.4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Xianjin Qin, Fengjiao Wang, Dejin Xie, Qi Zhou, Sheng Lin, Wenxiong Lin, Wei Li
{"title":"Identification of a key peptide cyclase for novel cyclic peptide discovery in Pseudostellaria heterophylla.","authors":"Xianjin Qin, Fengjiao Wang, Dejin Xie, Qi Zhou, Sheng Lin, Wenxiong Lin, Wei Li","doi":"10.1016/j.xplc.2025.101315","DOIUrl":null,"url":null,"abstract":"<p><p>Orbitides, also known as Caryophyllaceae-type cyclic peptides, from Traditional Chinese Medicine plant Pseudostellaria heterophylla (Mil.) Pax have great potential for improving memory and treating diabetes. Orbitides are ribosomally encoded and post-translationally modified peptides, but this key biosynthesis enzyme is still unknown in P. heterophylla. We investigated the orbitide distribution in P. heterophylla and mined novel precursor peptide genes and peptide cyclase from multiple omics data. The function of the key tailoring gene was elucidated using transient heterologous expression and virus-induced gene silencing systems. Our findings suggest that PhPCY3 is a unique gene involved in the cyclization of linear precursor peptides in planta. Molecular docking and multiple sequence alignment, followed by site-directed mutagenesis, showed that N500 and S502 were the key amino acid residues. More than 100 precursor peptide gene sequences were identified, and known active orbitides, such as heterophyllin B and pseudostellarin E/F/G, were successfully biosynthesized. Four novel orbitides, namely cyclo-[LDGPPPYF], cyclo-[WGSSTPHT], cyclo-[GLPIGAPWG], and cyclo-[FGDVGPVI], were identified using the heterologous expression platform. In this study, we describe a gene-guided approach for elucidating the biosynthesis pathway and discovering novel orbitides. Our work provides a strategy for mining and biosynthesizing novel orbitides in P. heterophylla and other plants to further investigate their activities.</p>","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":" ","pages":"101315"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Communications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.xplc.2025.101315","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Orbitides, also known as Caryophyllaceae-type cyclic peptides, from Traditional Chinese Medicine plant Pseudostellaria heterophylla (Mil.) Pax have great potential for improving memory and treating diabetes. Orbitides are ribosomally encoded and post-translationally modified peptides, but this key biosynthesis enzyme is still unknown in P. heterophylla. We investigated the orbitide distribution in P. heterophylla and mined novel precursor peptide genes and peptide cyclase from multiple omics data. The function of the key tailoring gene was elucidated using transient heterologous expression and virus-induced gene silencing systems. Our findings suggest that PhPCY3 is a unique gene involved in the cyclization of linear precursor peptides in planta. Molecular docking and multiple sequence alignment, followed by site-directed mutagenesis, showed that N500 and S502 were the key amino acid residues. More than 100 precursor peptide gene sequences were identified, and known active orbitides, such as heterophyllin B and pseudostellarin E/F/G, were successfully biosynthesized. Four novel orbitides, namely cyclo-[LDGPPPYF], cyclo-[WGSSTPHT], cyclo-[GLPIGAPWG], and cyclo-[FGDVGPVI], were identified using the heterologous expression platform. In this study, we describe a gene-guided approach for elucidating the biosynthesis pathway and discovering novel orbitides. Our work provides a strategy for mining and biosynthesizing novel orbitides in P. heterophylla and other plants to further investigate their activities.

太子参新环状肽关键肽环化酶的鉴定。
从中药植物异叶伪星(Pseudostellaria heterophylla, Mil.) Pax中提取的轨道肽(orbittides)也被称为石竹科环状肽(Caryophyllaceae-type cyclic peptides),具有改善记忆和治疗糖尿病的巨大潜力。轨道肽是由核糖体编码和翻译后修饰的肽,但这种关键的生物合成酶在异叶拟南芥中尚不清楚。研究了异叶假单胞肽的轨道分布,并从多组学数据中挖掘出新的前体肽基因和肽环化酶。利用瞬时异源表达和病毒诱导的基因沉默系统,研究了关键剪裁基因的功能。我们的研究结果表明,PhPCY3是一个独特的基因参与植物线状前体肽的环化。分子对接、多序列比对和定点诱变结果表明,N500和S502是该菌株的关键氨基酸残基。鉴定了100多个前体肽基因序列,成功合成了异茶碱B和伪星黄素E/F/G等已知的活性轨道化合物。利用异源表达平台鉴定出了cyclo-[LDGPPPYF]、cyclo-[WGSSTPHT]、cyclo-[GLPIGAPWG]和cyclo-[FGDVGPVI]四个新的轨道化合物。在这项研究中,我们描述了一种基因引导的方法来阐明生物合成途径和发现新的轨道。本研究为在异叶橐吾和其他植物中挖掘和生物合成新的轨道化合物提供了策略,以进一步研究它们的活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Communications
Plant Communications Agricultural and Biological Sciences-Plant Science
CiteScore
15.70
自引率
5.70%
发文量
105
审稿时长
6 weeks
期刊介绍: Plant Communications is an open access publishing platform that supports the global plant science community. It publishes original research, review articles, technical advances, and research resources in various areas of plant sciences. The scope of topics includes evolution, ecology, physiology, biochemistry, development, reproduction, metabolism, molecular and cellular biology, genetics, genomics, environmental interactions, biotechnology, breeding of higher and lower plants, and their interactions with other organisms. The goal of Plant Communications is to provide a high-quality platform for the dissemination of plant science research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信