Kun Zhou, Enhui Xin, Shan Yang, Xiao Luo, Yuqi Zhu, Yanwei Zeng, Junyan Fu, Zhuoying Ruan, Rong Wang, Daoying Geng, Liqin Yang
{"title":"Automated Fast Prediction of Bone Mineral Density From Low-dose Computed Tomography.","authors":"Kun Zhou, Enhui Xin, Shan Yang, Xiao Luo, Yuqi Zhu, Yanwei Zeng, Junyan Fu, Zhuoying Ruan, Rong Wang, Daoying Geng, Liqin Yang","doi":"10.1016/j.acra.2025.02.041","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Low-dose chest CT (LDCT) is commonly employed for the early screening of lung cancer. However, it has rarely been utilized in the assessment of volumetric bone mineral density (vBMD) and the diagnosis of osteoporosis (OP).</p><p><strong>Purpose: </strong>This study investigated the feasibility of using deep learning to establish a system for vBMD prediction and OP classification based on LDCT scans.</p><p><strong>Methods: </strong>This study included 551 subjects who underwent both LDCT and QCT examinations. First, the U-net was developed to automatically segment lumbar vertebrae from single 2D LDCT slices near the mid-vertebral level. Then, a prediction model was proposed to estimate vBMD, which was subsequently employed for detecting OP and osteopenia (OA). Specifically, two input modalities were constructed for the prediction model. The performance metrics of the models were calculated and evaluated.</p><p><strong>Results: </strong>The segmentation model exhibited a strong correlation with manual segmentation, achieving a mean Dice similarity coefficient (DSC) of 0.974, sensitivity of 0.964, positive predictive value (PPV) of 0.985, and Hausdorff distance of 3.261 in the test set. Linear regression and Bland-Altman analysis demonstrated strong agreement between the predicted vBMD from two-channel inputs and QCT-derived vBMD, with a root mean square error of 8.958 mg/mm<sup>3</sup> and an R<sup>2</sup> of 0.944. The areas under the curve for detecting OP and OA were 0.800 and 0.878, respectively, with an overall accuracy of 94.2%. The average processing time for this system was 1.5 s.</p><p><strong>Conclusion: </strong>This prediction system could automatically estimate vBMD and detect OP and OA on LDCT scans, providing great potential for the osteoporosis screening.</p>","PeriodicalId":50928,"journal":{"name":"Academic Radiology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.acra.2025.02.041","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Low-dose chest CT (LDCT) is commonly employed for the early screening of lung cancer. However, it has rarely been utilized in the assessment of volumetric bone mineral density (vBMD) and the diagnosis of osteoporosis (OP).
Purpose: This study investigated the feasibility of using deep learning to establish a system for vBMD prediction and OP classification based on LDCT scans.
Methods: This study included 551 subjects who underwent both LDCT and QCT examinations. First, the U-net was developed to automatically segment lumbar vertebrae from single 2D LDCT slices near the mid-vertebral level. Then, a prediction model was proposed to estimate vBMD, which was subsequently employed for detecting OP and osteopenia (OA). Specifically, two input modalities were constructed for the prediction model. The performance metrics of the models were calculated and evaluated.
Results: The segmentation model exhibited a strong correlation with manual segmentation, achieving a mean Dice similarity coefficient (DSC) of 0.974, sensitivity of 0.964, positive predictive value (PPV) of 0.985, and Hausdorff distance of 3.261 in the test set. Linear regression and Bland-Altman analysis demonstrated strong agreement between the predicted vBMD from two-channel inputs and QCT-derived vBMD, with a root mean square error of 8.958 mg/mm3 and an R2 of 0.944. The areas under the curve for detecting OP and OA were 0.800 and 0.878, respectively, with an overall accuracy of 94.2%. The average processing time for this system was 1.5 s.
Conclusion: This prediction system could automatically estimate vBMD and detect OP and OA on LDCT scans, providing great potential for the osteoporosis screening.
期刊介绍:
Academic Radiology publishes original reports of clinical and laboratory investigations in diagnostic imaging, the diagnostic use of radioactive isotopes, computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound, digital subtraction angiography, image-guided interventions and related techniques. It also includes brief technical reports describing original observations, techniques, and instrumental developments; state-of-the-art reports on clinical issues, new technology and other topics of current medical importance; meta-analyses; scientific studies and opinions on radiologic education; and letters to the Editor.