Mustafa İsmail Özkaraca, Mulya Agung, Pau Navarro, Albert Tenesa
{"title":"Divide and conquer approach for genome-wide association studies.","authors":"Mustafa İsmail Özkaraca, Mulya Agung, Pau Navarro, Albert Tenesa","doi":"10.1093/genetics/iyaf019","DOIUrl":null,"url":null,"abstract":"<p><p>Genome-wide association studies (GWAS) are computationally intensive, requiring significant time and resources with computational complexity scaling at least linearly with sample size. Here, we present an accurate and resource-efficient pipeline for GWAS that mitigates the impact of sample size on computational demands. Our approach involves (1) randomly partitioning the cohort into equally sized sub-cohorts, (2) conducting independent GWAS within each sub-cohort, and (3) integrating the results using a novel meta-analysis technique that accounts for population structure and other confounders between sub-cohorts. Importantly, we demonstrate through simulations and real-data examples in humans that our approach effectively manages analyzing related individuals, a critical factor in real datasets, while controlling for inflated effect sizes, a phenomenon known as winner's curse. We show that our method achieves the same discovery levels as standard approaches but with significantly reduced computational costs. Additionally, it is well-suited for incremental GWAS as new samples are added over time. Our implementation within a bioinformatics workflow management system enhances reproducibility and scalability.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyaf019","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Genome-wide association studies (GWAS) are computationally intensive, requiring significant time and resources with computational complexity scaling at least linearly with sample size. Here, we present an accurate and resource-efficient pipeline for GWAS that mitigates the impact of sample size on computational demands. Our approach involves (1) randomly partitioning the cohort into equally sized sub-cohorts, (2) conducting independent GWAS within each sub-cohort, and (3) integrating the results using a novel meta-analysis technique that accounts for population structure and other confounders between sub-cohorts. Importantly, we demonstrate through simulations and real-data examples in humans that our approach effectively manages analyzing related individuals, a critical factor in real datasets, while controlling for inflated effect sizes, a phenomenon known as winner's curse. We show that our method achieves the same discovery levels as standard approaches but with significantly reduced computational costs. Additionally, it is well-suited for incremental GWAS as new samples are added over time. Our implementation within a bioinformatics workflow management system enhances reproducibility and scalability.
期刊介绍:
GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work.
While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal.
The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists.
GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.