Pattern Mixture Sensitivity Analyses via Multiple Imputations for Non-Ignorable Dropout in Joint Modeling of Cognition and Risk of Dementia.

IF 1.8 4区 医学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Tetiana Gorbach, James R Carpenter, Chris Frost, Maria Josefsson, Jennifer Nicholas, Lars Nyberg
{"title":"Pattern Mixture Sensitivity Analyses via Multiple Imputations for Non-Ignorable Dropout in Joint Modeling of Cognition and Risk of Dementia.","authors":"Tetiana Gorbach, James R Carpenter, Chris Frost, Maria Josefsson, Jennifer Nicholas, Lars Nyberg","doi":"10.1002/sim.70040","DOIUrl":null,"url":null,"abstract":"<p><p>Motivated by the Swedish Betula study, we consider the joint modeling of longitudinal memory assessments and the hazard of dementia. In the Betula data, the time-to-dementia onset or its absence is available for all participants, while some memory measurements are missing. In longitudinal studies of aging, one cannot rule out the possibility of dropout due to health issues resulting in missing not at random longitudinal measurements. We, therefore, propose a pattern-mixture sensitivity analysis for missing not-at-random data in the joint modeling framework. The sensitivity analysis is implemented via multiple imputation as follows: (i) multiply impute missing not at random longitudinal measurements under a set of plausible pattern-mixture imputation models that allow for acceleration of memory decline after dropout, (ii) fit the joint model to each imputed longitudinal memory and time-to-dementia dataset, and (iii) combine the results of step (ii). Our work illustrates that sensitivity analyses via multiple imputations are an accessible, pragmatic method to evaluate the consequences of missing not at-random data on inference and prediction. This flexible approach can accommodate a range of models for the longitudinal and event-time processes. In particular, the pattern-mixture modeling approach provides an accessible way to frame plausible missing not at random assumptions for different missing data patterns. Applying our approach to the Betula study shows that worse memory levels and steeper memory decline were associated with a higher risk of dementia for all considered scenarios.</p>","PeriodicalId":21879,"journal":{"name":"Statistics in Medicine","volume":"44 6","pages":"e70040"},"PeriodicalIF":1.8000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11905689/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/sim.70040","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivated by the Swedish Betula study, we consider the joint modeling of longitudinal memory assessments and the hazard of dementia. In the Betula data, the time-to-dementia onset or its absence is available for all participants, while some memory measurements are missing. In longitudinal studies of aging, one cannot rule out the possibility of dropout due to health issues resulting in missing not at random longitudinal measurements. We, therefore, propose a pattern-mixture sensitivity analysis for missing not-at-random data in the joint modeling framework. The sensitivity analysis is implemented via multiple imputation as follows: (i) multiply impute missing not at random longitudinal measurements under a set of plausible pattern-mixture imputation models that allow for acceleration of memory decline after dropout, (ii) fit the joint model to each imputed longitudinal memory and time-to-dementia dataset, and (iii) combine the results of step (ii). Our work illustrates that sensitivity analyses via multiple imputations are an accessible, pragmatic method to evaluate the consequences of missing not at-random data on inference and prediction. This flexible approach can accommodate a range of models for the longitudinal and event-time processes. In particular, the pattern-mixture modeling approach provides an accessible way to frame plausible missing not at random assumptions for different missing data patterns. Applying our approach to the Betula study shows that worse memory levels and steeper memory decline were associated with a higher risk of dementia for all considered scenarios.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistics in Medicine
Statistics in Medicine 医学-公共卫生、环境卫生与职业卫生
CiteScore
3.40
自引率
10.00%
发文量
334
审稿时长
2-4 weeks
期刊介绍: The journal aims to influence practice in medicine and its associated sciences through the publication of papers on statistical and other quantitative methods. Papers will explain new methods and demonstrate their application, preferably through a substantive, real, motivating example or a comprehensive evaluation based on an illustrative example. Alternatively, papers will report on case-studies where creative use or technical generalizations of established methodology is directed towards a substantive application. Reviews of, and tutorials on, general topics relevant to the application of statistics to medicine will also be published. The main criteria for publication are appropriateness of the statistical methods to a particular medical problem and clarity of exposition. Papers with primarily mathematical content will be excluded. The journal aims to enhance communication between statisticians, clinicians and medical researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信