Madeleine E St Ville, Christopher S McMahan, Joe D Bible, Joshua M Tebbs, Christopher R Bilder
{"title":"Bayesian Additive Regression Trees for Group Testing Data.","authors":"Madeleine E St Ville, Christopher S McMahan, Joe D Bible, Joshua M Tebbs, Christopher R Bilder","doi":"10.1002/sim.70052","DOIUrl":null,"url":null,"abstract":"<p><p>When screening for low-prevalence diseases, pooling specimens (e.g., blood, urine, swabs, etc.) through group testing has the potential to substantially reduce costs when compared to testing specimens individually. A common goal in group testing applications is to estimate the relationship between an individual's true disease status and their individual-level covariate information. However, estimating such a relationship is a non-trivial problem because true individual disease statuses are unknown due to the group testing protocol and the possibility of imperfect testing. While several regression methods have been developed in recent years to accommodate the complexity of group testing data, the functional form of covariate effects is typically assumed to be known. To avoid model misspecification and to provide a more flexible approach, we propose a Bayesian additive regression trees framework to model the individual-level probability of disease with potentially misclassified group testing data. Our methods can be used to analyze data arising from any group testing protocol with the goal of estimating unknown functions of covariates and assay classification accuracy probabilities.</p>","PeriodicalId":21879,"journal":{"name":"Statistics in Medicine","volume":"44 6","pages":"e70052"},"PeriodicalIF":1.8000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11907685/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/sim.70052","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
When screening for low-prevalence diseases, pooling specimens (e.g., blood, urine, swabs, etc.) through group testing has the potential to substantially reduce costs when compared to testing specimens individually. A common goal in group testing applications is to estimate the relationship between an individual's true disease status and their individual-level covariate information. However, estimating such a relationship is a non-trivial problem because true individual disease statuses are unknown due to the group testing protocol and the possibility of imperfect testing. While several regression methods have been developed in recent years to accommodate the complexity of group testing data, the functional form of covariate effects is typically assumed to be known. To avoid model misspecification and to provide a more flexible approach, we propose a Bayesian additive regression trees framework to model the individual-level probability of disease with potentially misclassified group testing data. Our methods can be used to analyze data arising from any group testing protocol with the goal of estimating unknown functions of covariates and assay classification accuracy probabilities.
期刊介绍:
The journal aims to influence practice in medicine and its associated sciences through the publication of papers on statistical and other quantitative methods. Papers will explain new methods and demonstrate their application, preferably through a substantive, real, motivating example or a comprehensive evaluation based on an illustrative example. Alternatively, papers will report on case-studies where creative use or technical generalizations of established methodology is directed towards a substantive application. Reviews of, and tutorials on, general topics relevant to the application of statistics to medicine will also be published. The main criteria for publication are appropriateness of the statistical methods to a particular medical problem and clarity of exposition. Papers with primarily mathematical content will be excluded. The journal aims to enhance communication between statisticians, clinicians and medical researchers.