Use of Portable 24-Hour Polysomnography as Alternative Diagnostic Tool for Narcolepsy Type 1 in Adults and Children.

IF 7.7 1区 医学 Q1 CLINICAL NEUROLOGY
Neurology Pub Date : 2025-04-08 Epub Date: 2025-03-13 DOI:10.1212/WNL.0000000000213473
Francesco Biscarini, Stefano Vandi, Corrado Zenesini, Luca Vignatelli, Francesca Citeroni, Elena Antelmi, Christian Franceschini, Lucie Barateau, Yves Dauvilliers, Emmanuel Mignot, Giuseppe Plazzi, Fabio Pizza
{"title":"Use of Portable 24-Hour Polysomnography as Alternative Diagnostic Tool for Narcolepsy Type 1 in Adults and Children.","authors":"Francesco Biscarini, Stefano Vandi, Corrado Zenesini, Luca Vignatelli, Francesca Citeroni, Elena Antelmi, Christian Franceschini, Lucie Barateau, Yves Dauvilliers, Emmanuel Mignot, Giuseppe Plazzi, Fabio Pizza","doi":"10.1212/WNL.0000000000213473","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objectives: </strong>The diagnosis of narcolepsy type 1 (NT1) currently requires the multiple sleep latency test (MSLT), or a nocturnal sleep-onset REM period (SOREMP) combined with typical cataplexy, or alternatively the determination of CSF hypocretin-1 (CSF-hcrt-1) deficiency. We evaluated the 24-hour polysomnography (PSG) recordings in adult and pediatric patients as an alternative diagnostic tool.</p><p><strong>Methods: </strong>Patients of any age, referred to the narcolepsy center of a university hospital for suspected central disorder of hypersomnolence (CDH), were consecutively recruited between 2013 and 2022. Participants underwent 2 days (day1-night1-day2-night2) of continuous dynamic PSG followed by MSLT. When consent was given, CSF-hcrt-1 was measured. The accuracy of 24-hour PSG variables from night1 and day2 (index test) was assessed with receiver operating characteristic (ROC) curve analysis in identifying NT1 based on current criteria (applied to night2-PSG, MSLT, and CSF-hcrt1). The markers with area under the curve (AUC) ≥0.75 were then tested in adults and children, separately, and to diagnose NT1 and narcolepsy type 2 (NT2) in different scenarios.</p><p><strong>Results: </strong>Eight hundred seven patients (30.1% pediatric, 52.4% male) were included, and 709 had CSF-hcrt-1 measured. According to the standard criteria, 322 were diagnosed with NT1 (mean age 26.7 ± 17.1 years, 40.4% pediatric, 54.0% male) and 484 with non-NT1 (mean age 32.7 ± 16.5 years, 23.3% pediatric, 51.3% male), encompassing 31 with NT2, 163 with idiopathic hypersomnia, and 281 with other diagnoses. Detecting SOREMP ≥1 during daytime resulted in AUC = 0.84 (95% CI 0.82-0.87), with 84.4% sensitivity and 84.5% specificity for NT1. Performance was superior to all nighttime-PSG measures (<i>p</i> < 0.001) including nighttime-SOREMP (AUC = 0.77, 95% CI 0.74-0.80; sensitivity = 62.1%, specificity = 91.7%) and did not differ from 24-hour SOREMP ≥1 (AUC = 0.85, 95% CI 0.82-0.87; sensitivity = 89.7%, specificity = 80.2%). The combination of daytime-SOREMP ≥1 with cataplexy showed AUC = 0.89 (95% CI 0.86-0.91) for NT1, superior to the combination of nighttime-SOREMP with cataplexy (AUC = 0.78, 95% CI 0.76-0.81, <i>p</i> < 0.001) and similar to MSLT criteria for narcolepsy (AUC = 0.90, 95% CI 0.88-0.92, <i>p</i> = 0.36). Performances were similar in adults and children. Daytime-SOREMP ≥1 identified NT1 and NT2 combined within all CDH with a sensitivity of 80.8% and specificity of 88.0%.</p><p><strong>Conclusions: </strong>The detection of daytime-SOREMP during dynamic 24-hour PSG is more accurate than nighttime-SOREMP for diagnosing narcolepsy and, combined with cataplexy, is comparable with MSLT criteria for the identification of NT1. These results offer the prospect of 24-hour PSG diagnostics for NT1 in the home setting.</p><p><strong>Classification of evidence: </strong>This study provides Class II evidence that daytime SOREMP during a 24-hour PSG accurately distinguishes NT1 in patients with a clinical history of possible cataplexy from those who do not have NT1.</p>","PeriodicalId":19256,"journal":{"name":"Neurology","volume":"104 7","pages":"e213473"},"PeriodicalIF":7.7000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1212/WNL.0000000000213473","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background and objectives: The diagnosis of narcolepsy type 1 (NT1) currently requires the multiple sleep latency test (MSLT), or a nocturnal sleep-onset REM period (SOREMP) combined with typical cataplexy, or alternatively the determination of CSF hypocretin-1 (CSF-hcrt-1) deficiency. We evaluated the 24-hour polysomnography (PSG) recordings in adult and pediatric patients as an alternative diagnostic tool.

Methods: Patients of any age, referred to the narcolepsy center of a university hospital for suspected central disorder of hypersomnolence (CDH), were consecutively recruited between 2013 and 2022. Participants underwent 2 days (day1-night1-day2-night2) of continuous dynamic PSG followed by MSLT. When consent was given, CSF-hcrt-1 was measured. The accuracy of 24-hour PSG variables from night1 and day2 (index test) was assessed with receiver operating characteristic (ROC) curve analysis in identifying NT1 based on current criteria (applied to night2-PSG, MSLT, and CSF-hcrt1). The markers with area under the curve (AUC) ≥0.75 were then tested in adults and children, separately, and to diagnose NT1 and narcolepsy type 2 (NT2) in different scenarios.

Results: Eight hundred seven patients (30.1% pediatric, 52.4% male) were included, and 709 had CSF-hcrt-1 measured. According to the standard criteria, 322 were diagnosed with NT1 (mean age 26.7 ± 17.1 years, 40.4% pediatric, 54.0% male) and 484 with non-NT1 (mean age 32.7 ± 16.5 years, 23.3% pediatric, 51.3% male), encompassing 31 with NT2, 163 with idiopathic hypersomnia, and 281 with other diagnoses. Detecting SOREMP ≥1 during daytime resulted in AUC = 0.84 (95% CI 0.82-0.87), with 84.4% sensitivity and 84.5% specificity for NT1. Performance was superior to all nighttime-PSG measures (p < 0.001) including nighttime-SOREMP (AUC = 0.77, 95% CI 0.74-0.80; sensitivity = 62.1%, specificity = 91.7%) and did not differ from 24-hour SOREMP ≥1 (AUC = 0.85, 95% CI 0.82-0.87; sensitivity = 89.7%, specificity = 80.2%). The combination of daytime-SOREMP ≥1 with cataplexy showed AUC = 0.89 (95% CI 0.86-0.91) for NT1, superior to the combination of nighttime-SOREMP with cataplexy (AUC = 0.78, 95% CI 0.76-0.81, p < 0.001) and similar to MSLT criteria for narcolepsy (AUC = 0.90, 95% CI 0.88-0.92, p = 0.36). Performances were similar in adults and children. Daytime-SOREMP ≥1 identified NT1 and NT2 combined within all CDH with a sensitivity of 80.8% and specificity of 88.0%.

Conclusions: The detection of daytime-SOREMP during dynamic 24-hour PSG is more accurate than nighttime-SOREMP for diagnosing narcolepsy and, combined with cataplexy, is comparable with MSLT criteria for the identification of NT1. These results offer the prospect of 24-hour PSG diagnostics for NT1 in the home setting.

Classification of evidence: This study provides Class II evidence that daytime SOREMP during a 24-hour PSG accurately distinguishes NT1 in patients with a clinical history of possible cataplexy from those who do not have NT1.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurology
Neurology 医学-临床神经学
CiteScore
12.20
自引率
4.00%
发文量
1973
审稿时长
2-3 weeks
期刊介绍: Neurology, the official journal of the American Academy of Neurology, aspires to be the premier peer-reviewed journal for clinical neurology research. Its mission is to publish exceptional peer-reviewed original research articles, editorials, and reviews to improve patient care, education, clinical research, and professionalism in neurology. As the leading clinical neurology journal worldwide, Neurology targets physicians specializing in nervous system diseases and conditions. It aims to advance the field by presenting new basic and clinical research that influences neurological practice. The journal is a leading source of cutting-edge, peer-reviewed information for the neurology community worldwide. Editorial content includes Research, Clinical/Scientific Notes, Views, Historical Neurology, NeuroImages, Humanities, Letters, and position papers from the American Academy of Neurology. The online version is considered the definitive version, encompassing all available content. Neurology is indexed in prestigious databases such as MEDLINE/PubMed, Embase, Scopus, Biological Abstracts®, PsycINFO®, Current Contents®, Web of Science®, CrossRef, and Google Scholar.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信