A pharmacokinetic and pharmacodynamic model of an interleukin-12 (IL-12) anchored-drug conjugate for the treatment of solid tumors.

IF 5.3 2区 医学 Q1 ONCOLOGY
Hitesh B Mistry, David Hodson, Sailaja Battula, Michael M Schmidt, Robert Tighe, Howard L Kaufman, Christophe Chassagnole
{"title":"A pharmacokinetic and pharmacodynamic model of an interleukin-12 (IL-12) anchored-drug conjugate for the treatment of solid tumors.","authors":"Hitesh B Mistry, David Hodson, Sailaja Battula, Michael M Schmidt, Robert Tighe, Howard L Kaufman, Christophe Chassagnole","doi":"10.1158/1535-7163.MCT-24-1051","DOIUrl":null,"url":null,"abstract":"<p><p>Interleukin-12 (IL-12) mediates innate and adaptive immune responses and has demonstrated therapeutic anti-tumor activity but clinical development has been hindered by a narrow therapeutic window. We generated a novel IL-12 anchored-drug conjugate by physiochemical linking of murine IL-12 to aluminum hydroxide (alum). The complex was designed to utilize alum as a scaffolding for durable retention of IL-12 within the tumor microenvironment as a strategy to increase the therapeutic window. To better define the systemic PK profile of the anchored IL-12 (mANK-101), a model-based assessment tool was developed to describe the systemic PK profile and downstream signaling factors following intratumoral (IT) injection of mANK-101. When compared to non-anchored IL-12, mANK-101 exhibited a distinct PK profile. Specifically, mANK-101 treatment was associated with a significant 9-fold increase in the systemic terminal volume of distribution (Vd). Furthermore, linear mixed-effects models provided evidence that CD8+ T cell infiltration and increased serum interferon gamma (IFNG) levels were correlated with tumor regression after a single dose of mANK-101. In addition, PK/PD modeling confirmed a link between systemic IL-12 and serum IFNG. The model also suggests that anchored IL-12 drug conjugate is expected to prolong the absorption half-life (115 h vs 8 h for the unanchored drug) with durable local retention and limited systemic absorption. In addition, serum IFNG may be a surrogate marker for drug activity. The PK modeling predictions may also contribute to determining the optimal clinical dose and schedule of ANK-101 and other anchored drug conjugates in patients with solid tumors.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1535-7163.MCT-24-1051","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Interleukin-12 (IL-12) mediates innate and adaptive immune responses and has demonstrated therapeutic anti-tumor activity but clinical development has been hindered by a narrow therapeutic window. We generated a novel IL-12 anchored-drug conjugate by physiochemical linking of murine IL-12 to aluminum hydroxide (alum). The complex was designed to utilize alum as a scaffolding for durable retention of IL-12 within the tumor microenvironment as a strategy to increase the therapeutic window. To better define the systemic PK profile of the anchored IL-12 (mANK-101), a model-based assessment tool was developed to describe the systemic PK profile and downstream signaling factors following intratumoral (IT) injection of mANK-101. When compared to non-anchored IL-12, mANK-101 exhibited a distinct PK profile. Specifically, mANK-101 treatment was associated with a significant 9-fold increase in the systemic terminal volume of distribution (Vd). Furthermore, linear mixed-effects models provided evidence that CD8+ T cell infiltration and increased serum interferon gamma (IFNG) levels were correlated with tumor regression after a single dose of mANK-101. In addition, PK/PD modeling confirmed a link between systemic IL-12 and serum IFNG. The model also suggests that anchored IL-12 drug conjugate is expected to prolong the absorption half-life (115 h vs 8 h for the unanchored drug) with durable local retention and limited systemic absorption. In addition, serum IFNG may be a surrogate marker for drug activity. The PK modeling predictions may also contribute to determining the optimal clinical dose and schedule of ANK-101 and other anchored drug conjugates in patients with solid tumors.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.20
自引率
1.80%
发文量
331
审稿时长
3 months
期刊介绍: Molecular Cancer Therapeutics will focus on basic research that has implications for cancer therapeutics in the following areas: Experimental Cancer Therapeutics, Identification of Molecular Targets, Targets for Chemoprevention, New Models, Cancer Chemistry and Drug Discovery, Molecular and Cellular Pharmacology, Molecular Classification of Tumors, and Bioinformatics and Computational Molecular Biology. The journal provides a publication forum for these emerging disciplines that is focused specifically on cancer research. Papers are stringently reviewed and only those that report results of novel, timely, and significant research and meet high standards of scientific merit will be accepted for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信