JNK inhibition mitigates sepsis-associated encephalopathy via attenuation of neuroinflammation, oxidative stress and apoptosis.

IF 3.2 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM
Riya Gagnani, Harshita Singh, Manisha Suri, Anjana Bali
{"title":"JNK inhibition mitigates sepsis-associated encephalopathy via attenuation of neuroinflammation, oxidative stress and apoptosis.","authors":"Riya Gagnani, Harshita Singh, Manisha Suri, Anjana Bali","doi":"10.1007/s11011-025-01563-4","DOIUrl":null,"url":null,"abstract":"<p><p>Sepsis-associated encephalopathy (SAE) is a severe complication of sepsis, leading to cognitive dysfunction and neuronal damage. C-Jun N-terminal kinases (JNKs), a subset of the MAP kinase family, have attracted substantial interest for their role in cellular events during sepsis conditions. Previous investigations have established the involvement of JNK signaling against memory impairment and abnormal synaptic plasticity. However, the present study is the first to investigate the effects of JNK inhibition in sepsis-associated cerebral injury and cognitive impairments. This study investigated the neuroprotective effects of SP600125, a selective JNK inhibitor, in cecal ligation and puncture (CLP) mouse model of sepsis. CLP-induced sepsis resulted in significant cognitive impairments, as assessed by the open field test, inhibitory avoidance test, morris water maze, and novel object recognition test. Additionally, septic mice exhibited increased serum levels of neuronal injury markers (S100B and NSE), pro-inflammatory cytokines (TNF-α and IL-1β), and oxidative stress markers (MDA), along with decreased antioxidant levels (GSH, SOD, and CAT). Histological analysis revealed neuronal pyknosis, degeneration, and loss of Nissl bodies in the cortex and hippocampus of septic mice. Furthermore, sepsis-induced blood-brain barrier dysfunction was evident from increased cerebral edema. Treatment with SP600125 (10, 30, and 50 mg/kg) significantly attenuated CLP-induced cognitive deficits, neuronal injury, neuroinflammation, oxidative stress, and apoptosis in a dose-dependent manner. The present study provides preliminary evidence that JNK inhibition by SP600125 exerts neuroprotective effects against sepsis-induced encephalopathy in vivo via suppression of neuroinflammation, oxidative stress, and apoptosis.</p>","PeriodicalId":18685,"journal":{"name":"Metabolic brain disease","volume":"40 3","pages":"148"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic brain disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11011-025-01563-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Sepsis-associated encephalopathy (SAE) is a severe complication of sepsis, leading to cognitive dysfunction and neuronal damage. C-Jun N-terminal kinases (JNKs), a subset of the MAP kinase family, have attracted substantial interest for their role in cellular events during sepsis conditions. Previous investigations have established the involvement of JNK signaling against memory impairment and abnormal synaptic plasticity. However, the present study is the first to investigate the effects of JNK inhibition in sepsis-associated cerebral injury and cognitive impairments. This study investigated the neuroprotective effects of SP600125, a selective JNK inhibitor, in cecal ligation and puncture (CLP) mouse model of sepsis. CLP-induced sepsis resulted in significant cognitive impairments, as assessed by the open field test, inhibitory avoidance test, morris water maze, and novel object recognition test. Additionally, septic mice exhibited increased serum levels of neuronal injury markers (S100B and NSE), pro-inflammatory cytokines (TNF-α and IL-1β), and oxidative stress markers (MDA), along with decreased antioxidant levels (GSH, SOD, and CAT). Histological analysis revealed neuronal pyknosis, degeneration, and loss of Nissl bodies in the cortex and hippocampus of septic mice. Furthermore, sepsis-induced blood-brain barrier dysfunction was evident from increased cerebral edema. Treatment with SP600125 (10, 30, and 50 mg/kg) significantly attenuated CLP-induced cognitive deficits, neuronal injury, neuroinflammation, oxidative stress, and apoptosis in a dose-dependent manner. The present study provides preliminary evidence that JNK inhibition by SP600125 exerts neuroprotective effects against sepsis-induced encephalopathy in vivo via suppression of neuroinflammation, oxidative stress, and apoptosis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Metabolic brain disease
Metabolic brain disease 医学-内分泌学与代谢
CiteScore
5.90
自引率
5.60%
发文量
248
审稿时长
6-12 weeks
期刊介绍: Metabolic Brain Disease serves as a forum for the publication of outstanding basic and clinical papers on all metabolic brain disease, including both human and animal studies. The journal publishes papers on the fundamental pathogenesis of these disorders and on related experimental and clinical techniques and methodologies. Metabolic Brain Disease is directed to physicians, neuroscientists, internists, psychiatrists, neurologists, pathologists, and others involved in the research and treatment of a broad range of metabolic brain disorders.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信