Characterization of a Rhodopsin-Phosphodiesterase from Choanoeca flexa to be combined with Rhodopsin-Cyclases for bidirectional optogenetic cGMP control.

IF 4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Nicolas Liem, Anika Spreen, Arita Silapētere, Peter Hegemann
{"title":"Characterization of a Rhodopsin-Phosphodiesterase from Choanoeca flexa to be combined with Rhodopsin-Cyclases for bidirectional optogenetic cGMP control.","authors":"Nicolas Liem, Anika Spreen, Arita Silapētere, Peter Hegemann","doi":"10.1016/j.jbc.2025.108401","DOIUrl":null,"url":null,"abstract":"<p><p>Rhodopsin phosphodiesterases (RhPDEs) were first discovered in the choanoflagellate Salpingoeca rosetta, but their physiological role remained unknown. Their light-dependent modulation was found to be low, limiting optogenetic application. However, recent in vivo studies in the choanoflagellate Choanoeca flexa revealed a strong linkage of RhPDE to the actomyosin-mediated contraction and colony sheet inversion and identified downstream cGMP effectors. Through screening various RhPDE variants from C.flexa, we identified four photomodulated PDEs of which CfRhPDE1 revealed the highest cGMP affinity and the most pronounced light regulation with K<sub>m</sub> values of 1.9 and 4.4 μM in light and darkness. By co-expressing CfRhPDE1 with the Rhodopsin-guanylyl-cyclase from the fungus Catenaria anguillulae and a cyclic nucleotide-gated ion channel from olfactory neurons in ND7/23 cells, we demonstrate bidirectional dual-color modulation of cGMP levels and ion channel conductance. Together with spectroscopic characterization, our fast functional recordings suggest that the M-state of the photocycle initiates functional changes in the phosphodiesterase domain via rapid rhodopsin-PDE coupling. With efficient expression and 3.5 s lifetime of the active state, this protein provides high photosensitivity to the host cells. This demonstrates that RhPDEs can regulate cGMP signaling in mammalian cells on a subsecond timescale, closing a present gap in optogenetics and assisting researchers in setting up multicomponent optogenetic systems for bidirectional control of cyclic nucleotides.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"108401"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.108401","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Rhodopsin phosphodiesterases (RhPDEs) were first discovered in the choanoflagellate Salpingoeca rosetta, but their physiological role remained unknown. Their light-dependent modulation was found to be low, limiting optogenetic application. However, recent in vivo studies in the choanoflagellate Choanoeca flexa revealed a strong linkage of RhPDE to the actomyosin-mediated contraction and colony sheet inversion and identified downstream cGMP effectors. Through screening various RhPDE variants from C.flexa, we identified four photomodulated PDEs of which CfRhPDE1 revealed the highest cGMP affinity and the most pronounced light regulation with Km values of 1.9 and 4.4 μM in light and darkness. By co-expressing CfRhPDE1 with the Rhodopsin-guanylyl-cyclase from the fungus Catenaria anguillulae and a cyclic nucleotide-gated ion channel from olfactory neurons in ND7/23 cells, we demonstrate bidirectional dual-color modulation of cGMP levels and ion channel conductance. Together with spectroscopic characterization, our fast functional recordings suggest that the M-state of the photocycle initiates functional changes in the phosphodiesterase domain via rapid rhodopsin-PDE coupling. With efficient expression and 3.5 s lifetime of the active state, this protein provides high photosensitivity to the host cells. This demonstrates that RhPDEs can regulate cGMP signaling in mammalian cells on a subsecond timescale, closing a present gap in optogenetics and assisting researchers in setting up multicomponent optogenetic systems for bidirectional control of cyclic nucleotides.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biological Chemistry
Journal of Biological Chemistry Biochemistry, Genetics and Molecular Biology-Biochemistry
自引率
4.20%
发文量
1233
期刊介绍: The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信