CD103+CD56+ ILCs Are Associated with an Altered CD8+ T-cell Profile within the Tumor Microenvironment.

IF 8.1 1区 医学 Q1 IMMUNOLOGY
Douglas C Chung, Noor Shakfa, Jehan Vakharia, Kathrin Warner, Nicolas Jacquelot, Azin Sayad, SeongJun Han, Maryam Ghaedi, Carlos R Garcia-Batres, Jules Sotty, Arvin Azarmina, Ferris Nowlan, Edward L Y Chen, Michael Zon, Alisha R Elford, Ben X Wang, Linh T Nguyen, Miralem Mrkonjic, Blaise A Clarke, Marcus Q Bernardini, Benjamin Haibe-Kains, Sarah E Ferguson, Sarah Q Crome, Hartland W Jackson, Pamela S Ohashi
{"title":"CD103+CD56+ ILCs Are Associated with an Altered CD8+ T-cell Profile within the Tumor Microenvironment.","authors":"Douglas C Chung, Noor Shakfa, Jehan Vakharia, Kathrin Warner, Nicolas Jacquelot, Azin Sayad, SeongJun Han, Maryam Ghaedi, Carlos R Garcia-Batres, Jules Sotty, Arvin Azarmina, Ferris Nowlan, Edward L Y Chen, Michael Zon, Alisha R Elford, Ben X Wang, Linh T Nguyen, Miralem Mrkonjic, Blaise A Clarke, Marcus Q Bernardini, Benjamin Haibe-Kains, Sarah E Ferguson, Sarah Q Crome, Hartland W Jackson, Pamela S Ohashi","doi":"10.1158/2326-6066.CIR-24-0151","DOIUrl":null,"url":null,"abstract":"<p><p>Immunotherapies have had unprecedented success in the treatment of multiple cancer types, albeit with variable response rates. Unraveling the complex network of immune cells within the tumor microenvironment (TME) may provide additional insights to enhance antitumor immunity and improve clinical response. Many studies have shown that NK cells or innate lymphoid cells (ILC) have regulatory capacity. Here, we identified CD103 as a marker that was found on CD56+ cells that were associated with a poor proliferative capacity of tumor-infiltrating lymphocytes in culture. We further demonstrated that CD103+CD56+ ILCs isolated directly from tumors represented a distinct ILC population that expressed unique surface markers (such as CD49a and CD101), transcription factor networks, and transcriptomic profiles compared with CD103-CD56+ NK cells. Using single-cell multiomic and spatial approaches, we found that these CD103+CD56+ ILCs were associated with CD8+ T cells with reduced expression of granzyme B. Thus, this study identifies a population of CD103+CD56+ ILCs with potentially inhibitory functions that are associated with a TME that includes CD8+ T cells with poor antitumor activity. Further studies focusing on these cells may provide additional insights into the biology of an inhibitory TME.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":"527-546"},"PeriodicalIF":8.1000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11962407/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer immunology research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/2326-6066.CIR-24-0151","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Immunotherapies have had unprecedented success in the treatment of multiple cancer types, albeit with variable response rates. Unraveling the complex network of immune cells within the tumor microenvironment (TME) may provide additional insights to enhance antitumor immunity and improve clinical response. Many studies have shown that NK cells or innate lymphoid cells (ILC) have regulatory capacity. Here, we identified CD103 as a marker that was found on CD56+ cells that were associated with a poor proliferative capacity of tumor-infiltrating lymphocytes in culture. We further demonstrated that CD103+CD56+ ILCs isolated directly from tumors represented a distinct ILC population that expressed unique surface markers (such as CD49a and CD101), transcription factor networks, and transcriptomic profiles compared with CD103-CD56+ NK cells. Using single-cell multiomic and spatial approaches, we found that these CD103+CD56+ ILCs were associated with CD8+ T cells with reduced expression of granzyme B. Thus, this study identifies a population of CD103+CD56+ ILCs with potentially inhibitory functions that are associated with a TME that includes CD8+ T cells with poor antitumor activity. Further studies focusing on these cells may provide additional insights into the biology of an inhibitory TME.

CD103+CD56+ ILCs与肿瘤微环境中CD8+ t细胞谱的改变相关
免疫疗法在治疗多种癌症类型方面取得了前所未有的成功,尽管反应率各不相同。揭示肿瘤微环境(TME)中免疫细胞的复杂网络可能为增强抗肿瘤免疫和改善临床反应提供额外的见解。许多研究表明NK细胞或先天淋巴样细胞(ILC)具有调节能力。在这里,我们发现CD103是CD56+细胞上的一个标记物,它与培养中肿瘤浸润淋巴细胞的增殖能力差有关。我们进一步证明,与CD103-CD56+ NK细胞相比,直接从肿瘤中分离的CD103+CD56+ ILC代表了一个独特的ILC群体,表达独特的表面标记(如CD49a和CD101)、转录因子网络和转录组学特征。利用单细胞多组学和空间方法,我们发现这些CD103+CD56+ ILCs与颗粒酶b表达降低的CD8+ T细胞相关,因此,本研究确定了具有潜在抑制功能的CD103+CD56+ ILCs群体与包括抗肿瘤活性较差的CD8+ T细胞在内的TME相关。对这些细胞的进一步研究可能会为抑制性TME的生物学提供更多的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cancer immunology research
Cancer immunology research ONCOLOGY-IMMUNOLOGY
CiteScore
15.60
自引率
1.00%
发文量
260
期刊介绍: Cancer Immunology Research publishes exceptional original articles showcasing significant breakthroughs across the spectrum of cancer immunology. From fundamental inquiries into host-tumor interactions to developmental therapeutics, early translational studies, and comprehensive analyses of late-stage clinical trials, the journal provides a comprehensive view of the discipline. In addition to original research, the journal features reviews and opinion pieces of broad significance, fostering cross-disciplinary collaboration within the cancer research community. Serving as a premier resource for immunology knowledge in cancer research, the journal drives deeper insights into the host-tumor relationship, potent cancer treatments, and enhanced clinical outcomes. Key areas of interest include endogenous antitumor immunity, tumor-promoting inflammation, cancer antigens, vaccines, antibodies, cellular therapy, cytokines, immune regulation, immune suppression, immunomodulatory effects of cancer treatment, emerging technologies, and insightful clinical investigations with immunological implications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信