Sam Schoenmakers, Letao Li, Anna C M Kluivers, Michelle Broekhuizen, Madhavi S Harhangi, A H Jan Danser, Irwin Reiss, Karel Allegaert, Sjoerd A A van den Berg, Bertrand D van Zelst, Ron H N van Schaik, Philip L J DeKoninck, Emma Ronde, Sebastiaan D T Sassen, Sinno H P Simons, Birgit C P Koch
{"title":"Pharmacokinetics of betamethasone in pre-eclampsia: An in vivo and ex vivo study.","authors":"Sam Schoenmakers, Letao Li, Anna C M Kluivers, Michelle Broekhuizen, Madhavi S Harhangi, A H Jan Danser, Irwin Reiss, Karel Allegaert, Sjoerd A A van den Berg, Bertrand D van Zelst, Ron H N van Schaik, Philip L J DeKoninck, Emma Ronde, Sebastiaan D T Sassen, Sinno H P Simons, Birgit C P Koch","doi":"10.1002/bcp.70035","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>To enhance understanding of betamethasone and its metabolites' pharmacokinetics in pregnancy, specifically early-onset pre-eclampsia, through a population pharmacokinetic model. Additionally, to investigate the placental metabolism and transfer of betamethasone and its main metabolites.</p><p><strong>Methods: </strong>A prospective, single-centre pharmacokinetic study was conducted in pregnant women (n = 28) with imminent preterm birth treated with intramuscular betamethasone. Betamethasone serum concentrations were determined from serial venous blood samples (n = 194). Placental transfer and metabolism were studied using ex vivo human placental perfusion (healthy term; n = 3) and placental explant experiments (healthy term, n = 4; early-onset pre-eclampsia, n = 4). Additionally, placental mRNA expression of CYP3A4, CYP3A7, 11β-hydroxysteroid dehydrogenase (HSD) 1 and 11β-HSD2 were quantified in healthy and early-onset pre-eclampsia placentas.</p><p><strong>Results: </strong>The population pharmacokinetic model was best described by a 2-compartment nonlinear mixed effects model. Betamethasone clearance in early-onset pre-eclamptic women was 60% lower of that observed in women without pre-eclampsia (9.35 vs. 15.78 L/h), resulting in a 40% median increase in maternal betamethasone exposure (1567 vs. 1114 ng h/mL). Ex vivo experiments showed placental transfer of betamethasone to the foetal circulation (foetal-to-maternal ratio 0.76 ± 0.05 [in a perfused placental cotyledon]). The placenta only converted betamethasone into 11-ketobetamethasone, with similar ratios in early-onset pre-eclampsia and healthy placental explants (3.0 ± 2.2 vs. 1.4 ± 0.4 per mg tissue, P = .27). The expression of 11β-HSD1 mRNA was lower in early-onset pre-eclampsia placentas (P = .015), while placental CYP3A7 and 11β-HSD2 mRNA expression were similar.</p><p><strong>Conclusion: </strong>Women with early-onset pre-eclampsia have elevated betamethasone exposure. Betamethasone transfers freely into the foetal circulation, with placental metabolism resulting only in 11-ketobetamethasone. Decreased placental 11β-HSD1 expression may play a role in increased betamethasone exposure in early-onset pre-eclampsia.</p>","PeriodicalId":9251,"journal":{"name":"British journal of clinical pharmacology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British journal of clinical pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/bcp.70035","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Aims: To enhance understanding of betamethasone and its metabolites' pharmacokinetics in pregnancy, specifically early-onset pre-eclampsia, through a population pharmacokinetic model. Additionally, to investigate the placental metabolism and transfer of betamethasone and its main metabolites.
Methods: A prospective, single-centre pharmacokinetic study was conducted in pregnant women (n = 28) with imminent preterm birth treated with intramuscular betamethasone. Betamethasone serum concentrations were determined from serial venous blood samples (n = 194). Placental transfer and metabolism were studied using ex vivo human placental perfusion (healthy term; n = 3) and placental explant experiments (healthy term, n = 4; early-onset pre-eclampsia, n = 4). Additionally, placental mRNA expression of CYP3A4, CYP3A7, 11β-hydroxysteroid dehydrogenase (HSD) 1 and 11β-HSD2 were quantified in healthy and early-onset pre-eclampsia placentas.
Results: The population pharmacokinetic model was best described by a 2-compartment nonlinear mixed effects model. Betamethasone clearance in early-onset pre-eclamptic women was 60% lower of that observed in women without pre-eclampsia (9.35 vs. 15.78 L/h), resulting in a 40% median increase in maternal betamethasone exposure (1567 vs. 1114 ng h/mL). Ex vivo experiments showed placental transfer of betamethasone to the foetal circulation (foetal-to-maternal ratio 0.76 ± 0.05 [in a perfused placental cotyledon]). The placenta only converted betamethasone into 11-ketobetamethasone, with similar ratios in early-onset pre-eclampsia and healthy placental explants (3.0 ± 2.2 vs. 1.4 ± 0.4 per mg tissue, P = .27). The expression of 11β-HSD1 mRNA was lower in early-onset pre-eclampsia placentas (P = .015), while placental CYP3A7 and 11β-HSD2 mRNA expression were similar.
Conclusion: Women with early-onset pre-eclampsia have elevated betamethasone exposure. Betamethasone transfers freely into the foetal circulation, with placental metabolism resulting only in 11-ketobetamethasone. Decreased placental 11β-HSD1 expression may play a role in increased betamethasone exposure in early-onset pre-eclampsia.
期刊介绍:
Published on behalf of the British Pharmacological Society, the British Journal of Clinical Pharmacology features papers and reports on all aspects of drug action in humans: review articles, mini review articles, original papers, commentaries, editorials and letters. The Journal enjoys a wide readership, bridging the gap between the medical profession, clinical research and the pharmaceutical industry. It also publishes research on new methods, new drugs and new approaches to treatment. The Journal is recognised as one of the leading publications in its field. It is online only, publishes open access research through its OnlineOpen programme and is published monthly.